
Université de Montréal

Programming tools for intelligent systems

par

Breandan Considine

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de

Maître ès sciences (M.Sc.)
en Informatique

juin 2021

c⃝ Breandan Considine, 2020

Université de Montréal
Faculté des études supérieures et postdoctorales

Ce mémoire intitulé

Programming tools for intelligent systems

présenté par

Breandan Considine

a été évalué par un jury composé des personnes suivantes :

Marc Feeley
(président-rapporteur)

Liam Paull
(directeur de recherche)

Michalis Famelis
(codirecteur)

Eugène Syriani
(membre du jury)

Abstract

Programming tools are computer programs which help humans program computers. Tools

come in all shapes and forms, from editors and compilers to debuggers and profilers. Each

of these tools facilitates a core task in the programming workflow which consumes cognitive

resources when performed manually. In this thesis, we explore several tools that facilitate

the process of building intelligent systems, and which reduce the cognitive effort required

to design, develop, test and deploy intelligent software systems. First, we introduce an in-

tegrated development environment (IDE) for programming Robot Operating System (ROS)

applications, called Hatchery (Chapter 2). Second, we describe Kotlin∇, a language and type

system for differentiable programming, an emerging paradigm in machine learning (Chap-

ter 3). Third, we propose a new algorithm for automatically testing differentiable programs,

drawing inspiration from techniques in adversarial and metamorphic testing (Chapter 4), and

demonstrate its empirical efficiency in the regression setting. Fourth, we explore a container

infrastructure based on Docker, which enables reproducible deployment of ROS applications

on the Duckietown platform (Chapter 5). Finally, we reflect on the current state of pro-

gramming tools for these applications and speculate what intelligent systems programming

might look like in the future (Chapter 6).

Keywords: intelligent systems, machine learning, type systems, embedded systems, dis-

tributed systems, programming languages, functional programming, differentiable program-

ming, probabilistic programming, programming tools, compilers, automatic differentiation,

backpropagation, automated testing, fuzzing, metamorphic testing, property-based testing,

generative modeling, static analysis, build automation, continuous integration, virtual ma-

chines, ROS, Kotlin, Docker, Duckietown.

v

Résumé

Les outils de programmation sont des programmes informatiques qui aident les humains à

programmer des ordinateurs. Les outils sont de toutes formes et tailles, par exemple les

éditeurs, les compilateurs, les débogueurs et les profileurs. Chacun de ces outils facilite

une tâche principale dans le flux de travail de programmation qui consomme des ressources

cognitives lorsqu’il est effectué manuellement. Dans cette thèse, nous explorons plusieurs

outils qui facilitent le processus de construction de systèmes intelligents et qui réduisent

l’effort cognitif requis pour concevoir, développer, tester et déployer des systèmes logiciels

intelligents. Tout d’abord, nous introduisons un environnement de développement inté-

gré (EDI) pour la programmation d’applications Robot Operating System (ROS), appelé

Hatchery (Chapter 2). Deuxièmement, nous décrivons Kotlin∇, un système de langage et

de type pour la programmation différenciable, un paradigme émergent dans l’apprentissage

automatique (Chapter 3). Troisièmement, nous proposons un nouvel algorithme pour tester

automatiquement les programmes différenciables, en nous inspirant des techniques de tests

contradictoires et métamorphiques (Chapter 4), et démontrons son efficacité empirique dans

le cadre de la régression. Quatrièmement, nous explorons une infrastructure de conteneurs

basée sur Docker, qui permet un déploiement reproductible des applications ROS sur la

plate-forme Duckietown (Chapter 5). Enfin, nous réfléchissons à l’état actuel des outils de

programmation pour ces applications et spéculons à quoi pourrait ressembler la programma-

tion de systèmes intelligents à l’avenir (Chapter 6).

Mots-clés: systèmes intelligents, apprentissage automatique, systèmes de types, systèmes

embarqués, systèmes distribués, langages de programmation, programmation fonctionnelle,

programmation différenciable, programmation probabiliste, outils de programmation, com-

pilateurs, différenciation automatique, rétropropagation, test automatisé, fuzzing, test mé-

tamorphique, test de propriété, modélisation générative, analyse statique, moteur de pro-

duction, intégration continue, machines virtuelles, ROS, Kotlin, Docker, Duckietown.

vii

Acknowledgements

I would like to thank Gimmey, Mom, Uncle Mark, and Dad for their unfailing love and

support. Hanneli Tavante for teaching me type theory and the beauty of functional pro-

gramming. Siyan Wang for his fellowship and adventures. Xiaoyan Liu for planting in me

the seed of mathematics. Uncle Andy for watering the seed for many years. Aunt Shan-

non, Adam Devoe and Jacquie Kirrane for encouraging me to pursue grad school. Arthur

Nunes-Harwitt for teaching me algorithmic differentiation a long time ago. Renee Miller

for sparking my interest in neural science. Ian Clarke for showing me a clever new lan-

guage called Kotlin. Hadi Hariri for putting more trust in me than I deserved. Lukas Eder

and Eugene Petrenko for showing me the magic of type-safe DSLs and giving me advice

about grad school. Rusi Hristov for his patience and mentorship. Dmitry Serdyuk and

Kyle Kastner for introducing me to Montréal and kindly welcoming me into the speech

reading group. Isabela Albuquerque and João Monteiro for showing me what good research

looks like. Manfred Diaz and Maxime Chevalier Boisvert for the inspiration, conversations

and feedback. Florian Golemo for his excellent engineering and architectural advice. Ryan

Turner, Saikrishna Gottipati, Vincent Mai, Krishna Murthy, Bhairav Mehta, Christos Tsirig-

otis, Konstantin Solomatov and Xujie Si for the interesting conversations. Pascal Lamblin,

Olivier Breleux and Bart van Merriënboer for lighting the path between ML and PL. Conal

Elliott for teaching me the importance of simplicity and denotational semantics. Christian

Perone for introducing me to PyTorch, Alexander Nozik, Erik Meijer, Kiran Gopinathan,

Roman Elizarov, Jacob Miller and Adam Pocock for their useful comments and feedback

related to Kotlin∇. Miltos Allamanis for showing me there is room for SE in ML. Celine

Begin at the Université de Montréal for helping a stranger on a cold winter’s eve in 2017.

Stefan Monnier for thoughtfully and thoroughly replying to my rambling emails. Andrea

Censi for his advice and encouragement. Last but not least, I wish to thank my brilliant

advisors Liam Paull for taking a chance on an out-of-distribution sample, providing strong

gradients and giving me far more credit than I deserved, and Michalis Famelis for teaching

me the value of intuitionistic logic, formal methods, and self-discipline. Thank you so much!

ix

http://hannelita.com/
https://laverne.edu/directory/person/xiaoyan-liu/
https://www.cs.rit.edu/~anh/
https://www.cs.rit.edu/~anh/
https://www.sas.rochester.edu/bcs/people/faculty/miller_renee/index.html
http://blog.locut.us
https://kotlinlang.org/
https://hadihariri.com/
https://www.jooq.org/
https://jonnyzzz.com/
https://github.com/rusi
https://scholar.google.ca/citations?user=PsKlNzUAAAAJ
http://kastnerkyle.github.io/
https://scholar.google.ca/citations?user=-Ss9QGkAAAAJ
https://scholar.google.ca/citations?user=hkO47vsAAAAJ
https://takeitallsource.github.io
https://pointersgonewild.com/
https://fgolemo.github.io/
http://TurnerComputing.com
http://TurnerComputing.com
https://saikrishna-1996.github.io
https://maivincent.github.io
https://krrish94.github.io/
https://bhairavmehta95.github.io/
https://mila.quebec/en/person/christos-tsirigotis/
https://mila.quebec/en/person/christos-tsirigotis/
http://www.solomatov.me/
https://www.seas.upenn.edu/~xsi/
https://scholar.google.ca/citations?user=bn4xHHIAAAAJ
http://breuleux.net
https://scholar.google.ca/citations?user=XE9SDzgAAAAJ
http://conal.net/
http://conal.net/
http://christianperone.com
http://christianperone.com
https://research.jetbrains.org/researchers/altavir
https://twitter.com/headinthebox
https://scholar.google.com/citations?user=IcuGXgcAAAAJ
https://medium.com/@elizarov
https://cquic.unm.edu/member/jacob.miller/
http://www.adampocock.com/
https://miltos.allamanis.com/
https://diro.umontreal.ca/accueil/
https://diro.umontreal.ca/accueil/
https://www.iro.umontreal.ca/~monnier/
https://censi.science/
https://censi.science/
http://liampaull.ca/
https://michalis.famelis.info/

Contents

Abstract . v

Résumé . vii

Acknowledgements . ix

List of tables . xvii

List of figures . xix

Chapter 1. Introduction. 1

1.1. Design: Programming tools for robotics . 3

1.2. Implementation: Type-safe differentiable programming . 5

1.3. Verification: Testing intelligent systems . 8

1.4. Maintenance: Tools for reproducible robotics . 9

1.5. Contributions . 12

1.6. Iconography . 13

Chapter 2. Programming tools for robotics . 15

2.1. Introduction to the Robot Operating System . 16

2.2. Installation . 19

2.3. Plugin development . 19

2.3.1. Refactoring . 20

2.3.2. Parsing . 20

xi

2.3.3. Running and debugging . 22

2.3.4. User interface . 23

2.4. Ongoing work . 25

2.5. Future work . 28

2.6. Conclusion . 28

Chapter 3. Type-safe differentiable programming . 29

3.1. Automatic differentiation . 30

3.2. Differentiable programming . 32

3.3. Static and dynamic languages . 35

3.4. Imperative and functional languages . 35

3.5. Kotlin . 36

3.6. Kotlin∇ . 37

3.7. Usage . 39

3.8. Type systems . 40

3.9. Shape safety . 41

3.10. Testing . 45

3.11. Operator overloading . 47

3.12. First-class functions. 47

3.13. Numeric tower . 48

3.14. Algebraic data types . 49

3.15. Multiple dispatch . 50

3.16. Extension functions . 51

xii

3.17. Automatic, symbolic differentiation . 52

3.18. Coroutines . 53

3.19. Comparison. 53

3.20. Future work . 55

3.21. Conclusion. 56

Chapter 4. Testing intelligent systems . 57

4.1. Background . 58

4.1.1. Unit testing. 58

4.1.2. Integration testing . 58

4.1.3. Fuzz testing. 59

4.1.4. Property-based testing . 59

4.1.5. Metamorphic testing . 61

4.1.6. Adversarial testing . 62

4.1.7. Generative adversarial testing . 65

4.2. Probabilistic adversarial testing . 66

4.3. Conclusion . 72

Chapter 5. Tools for reproducible robotics . 73

5.1. Dependency management . 74

5.2. Operating systems and virtualization. 75

5.3. Containerization . 75

5.4. Introduction to Docker . 77

5.4.1. Creating an image snapshot . 79

5.4.2. Writing an image recipe . 81

5.4.3. Layer caching . 82

xiii

5.4.4. Volume sharing . 86

5.4.5. Multi-stage builds. 87

5.5. ROS and Docker . 88

5.6. Duckiebot development using Docker. 89

5.6.1. Flashing a bootable disk . 90

5.6.2. Web interface . 90

5.6.3. Testing ROS . 91

5.6.4. Build and deployment. 91

5.6.5. Multi-architecture support . 92

5.6.6. Running a simple HTTP file server . 92

5.6.7. Camera testing . 93

5.6.8. Graphical user interface tools . 93

5.6.9. Remote control . 94

5.6.10. Camera calibration . 94

5.6.11. Wheel calibration . 94

5.6.12. Lane following . 95

5.7. Retrospective . 95

5.7.1. Remarks on security . 97

5.8. Future work . 98

5.9. Conclusion . 98

Chapter 6. Conclusion . 99

6.1. Contributions . 103

References . 105

Appendix A. Type-safe differentiable programming. 135

A.1. Grammar . 135

xiv

Appendix B. Testing intelligent systems. 137

B.1. Linear regression . 137

B.1.1. Finite difference method . 137

B.1.2. Partial differentiation. 138

B.1.3. Matrix solution . 139

B.2. Polynomial regression . 141

B.2.1. Univariate PR. 141

B.2.2. Multivariate PR . 141

B.2.3. Kernel trick . 142

Appendix C. Tools for reproducible robotics . 143

C.1. Useful Docker resources . 143

C.1.1. Balena . 143

C.1.2. ROS Docker Images . 144

C.1.3. Hypriot . 144

C.1.4. PiWheels . 144

C.1.5. Docker Hub . 144

C.1.6. Docker Cloud . 146

xv

List of tables

3.1 Kotlin∇’s shape system specifies the output shape for tensor expressions. 42

3.2 The shape of a tensor derivative depends on the shape of the function under

differentiation and the shape of the variable with respect to which we are

differentiating. 42

3.3 Comparison of AD libraries. Although we do not distinguish between AD and SD

as described in § 3.17, here we adopt the authors’ preferred nomenclature. We do

make a distinction between differentiable programming libraries (§ 3.2) and those

which simply construct neural networks. The -symbol indicates work in progress. 54

4.1 Some DFGs generated by Eq. 4.2.3 with accompanying 2D plots. 70

4.2 Above: Ground truth and trained model predictions for a single expression. Below:

A single particle attacks the model by seeking higher error on the surrogate loss. 71

xvii

List of figures

1.1 Royce’s original waterfall model describes the software development process. We

use it to guide our discussion and frame our contributions inside of this model. . . 3
2.1 Unique downloads of Hatchery between the time of its release and June 2019.

https://plugins.jetbrains.com/plugin/10290-hatchery. 16

2.2 A typical ROS application contains a large graph of dependencies. 17

2.3 Railroad diagram for the grammar shown above (reads from left to right). 22

2.4 ROS Run Configuration. Accessible via: Run Edit Configurations + ROS Launch . . 23

2.5 The evolution of code. On the left are languages that force the user to adapt to

the machine. To the right are increasingly flexible representations of source code. 24

2.6 Projectional editors such as MPS [Voelter and Solomatov, 2010, Pech et al., 2013]

(shown above) are able to render source code in visually creative ways. This might

resemble freehand notation or some other visually appealing format. 24

2.7 Hatchery’s UI supports syntax highlighting, validation and project navigation. . . 26

2.8 Detection of local ROS packages. Accessible via: File Settings ROS config 26

3.1 Differentiable programming includes neural networks, but more broadly, arbitrary

programs which use gradient-based optimization to approximate a loss function.

Probabilistic programming [Tristan et al., 2014, Carpenter et al., 2017, Gorinova

et al., 2019] is a generalization of probabilistic graphical models which uses Monte

Carlo (MC) methods to approximate a density function. 33

3.2 Two equivalent programs, both implementing the function f(l1, l2) = l1 · l2. 36

3.3 Adapted from van Merriënboer et al. [2018]. Kotlin∇ models are data structures,

constructed by an embedded DSL, eagerly optimized, and lazily evaluated. 38

3.4 Implicit DFG constructed by the original expression, shown above. 40

xix

4.1 We compare numerical drift between AD and SD over a swollen expression using

fixed precision and arbitrary precision (AP). AD and SD both exhibit relative

errors (i.e. with respect to each other) several orders of magnitude lower than

their absolute error. These results are consistent with the findings of Laue [2019]. 60
4.2 For each expression in our dataset, we train a polynomial regressor to convergence. 69

4.3 By construction, our shrinker detects a greater number of errors per evaluation

than one which does not take the gradient into consideration. 72

5.1 Full virtualization is a very resource-hungry process. Containerization is cheaper,

as it shares a kernel with the host OS. Emulation lets us emulate hardware as

software. Any of these methods can be used in conjunction with any other. 76
5.2 Containers live in user space. By default they are sandboxed from the host OS

and sibling containers, but unlike VMs, share a common kernel with each other

and the host OS. All system calls are passed through host kernel. 76

5.3 Container infrastructure. Left: The ROS stack targets two primary architectures,

x86 and ARM. To simplify the build process, we build ARM artifacts on x86 using

QEMU [Bellard, 2005]. Right: Reinforcement learning stack. Build artifacts are

trained on a GPU, and transferred to CPU for evaluation. Deep learning models

may be also be run on an ARM device using an accelerator. 89

5.4 Browser interface for individual Duckiebots. It is provided by Portainer, a RESTful

web dashboard, which wraps the Docker CLI and offers support for container

management, configuration, networking and terminal emulation (shown above).
http://DUCKIEBOT_NAME:9000/#/container/container_name “Console”  91

5.5 Early prototype of the Docker image hierarchy. Chaining unversioned autobuilds

without disciplined unit testing creates a potential domino effect which allows

breaking changes to propagate downstream, resulting in a cascade of silent failures. 96

5.6 The AI Driving Olympics, a primary use case for the system described above. . . . 96

6.1 Complexity of detecting various types of programming errors. 102

6.2 Many interesting applications lie at the intersection of these three fields. 103

xx

Chapter 1

Introduction

“There is a race between the increasing complexity of the systems we build and our

ability to develop intellectual tools for understanding their complexity. If the race

is won by our tools, then systems will eventually become easier to use and more

reliable. If not, they will continue to become harder to use and less reliable for

all but a relatively small set of common tasks. Given how hard thinking is, if those

intellectual tools are to succeed, they will have to substitute calculation for thought.”

–Leslie Lamport [2002], A Discussion with Leslie Lamport

Computational complexity is of such concern in computer science that a great deal of the

field is dedicated to understanding it through the lens of function analysis and information

theory. In software engineering, researchers are primarily interested in the complexity of

building software – the digital manifestation of algorithms on physical hardware. One kind of

software complexity is the cognitive effort required to understand a program.1 While today’s

software is becoming rapidly more intelligent, it shows few signs of becoming more intelligible.

Better tools are needed for managing the complexity of building software systems.

The objective of this thesis is to develop methods that reduce the cognitive effort required

to build intelligent systems, using developer tools, programming language abstractions, auto-

mated testing, and virtualization technology.

Broadly speaking, intelligent systems differ from ordinary software systems in that they

enable machines to detect patterns, perform tasks, and solve problems which they are not

explicitly programmed to solve and which human experts were previously incapable of solv-

ing by hard-coding explicit rules. Typically, these systems are able to:

1This can be approximated by various metrics like cyclomatic or Halstead complexity.

https://www.microsoft.com/en-us/research/uploads/prod/2016/12/A-Discussion-With-Leslie-Lamport.pdf

(1) learn generalizable rules by processing large amounts of data

(2) tune a large number of free parameters (thousands to billions)

(3) outperform well-trained humans in domain-specific tasks

While the idea of intelligent systems has existed for decades, three critical developments

made modern intelligent systems ultimately successful. First, computer processing power

has become faster, cheaper, and much more readily available. Similarly, the digitalization of

new datasets has made vast amounts of information available, and data storage costs have

plummeted dramatically. (A $5 thumb drive today has 200 times more storage capacity

than a 2,000 pound, 5 MB, IBM hard drive that leased for $3,000 per month in 1956.) Most

importantly, has been the development of more efficient learning algorithms.

In recent years, computer science and software engineering has made significant strides

in building and deploying intelligent systems. Nearly every mobile computer in the world

is able to detect objects in images, perform speech-to-text and language translation. These

breakthroughs were the direct result of fundamental progress in neural networks and repre-

sentation learning. Also key to the success of modern intelligent systems was the adoption

of collaborative open source practices, pioneered by the software engineering community.

Software engineers developed automatic differentiation libraries like Theano [Bergstra et al.,

2010], Torch [Collobert et al., 2002] and Caffe [Jia et al., 2014], and built many popular

simulators for reinforcement learning. The ease of use and availability of these tools was

crucial for democratizing deep learning techniques.

Intelligent systems are widely deployed in virtual settings like data science and cloud

services. But even with the tremendous success of machine learning algorithms in fully-

observable domains like image recognition and speech processing, intelligent systems have

yet to be widely adopted in robotics (at the time of writing this thesis). This dilemma can be

partly attributed to various theoretical problems such as domain adaption and transfer learn-

ing. Yet with the proven capabilities of modern learning algorithms, exponential increase in

processing power, and decades-long effort in building physically-embodied intelligent agents,

we should have more progress to show. Why has this goal evaded researchers for so long?

One reason, we conjecture, is a lack of programming tools and abstractions for designing, de-

veloping, deploying and evaluating intelligent systems. In practice, these activities consume

a large amount of cognitive effort without the right set of tools and abstractions.

2

In traditional software engineering, the Waterfall model (Fig. 1.1) is a classical model for

software development consisting of various stages [Royce, 1987]. We propose contributions

to four stages: First, we demonstrate an integrated development environment for design-

ing robotics software (Chapter 2). Next, we show a type-safe domain-specific language for

implementing differentiable programs, an emerging paradigm in deep learning (Chapter 3).

To verify this application, we use a set of techniques borrowed from property-based test-

ing [Fink and Bishop, 1997] and adversarial learning [Lowd and Meek, 2005] (Chapter 4).

Docker containers [Merkel, 2014] are used to automate the maintenance of reproducible ro-

botics applications on heterogeneous hardware platforms (Chapter 5). Finally, we offer some

concluding remarks and lessons learned building these tools in (Chapter 6).

Fig. 1.1. Royce’s original waterfall model describes the software development process. We

use it to guide our discussion and frame our contributions inside of this model.

1.1. Design: Programming tools for robotics

Today’s software systems are deeply complex entities. Gone are the days where a solitary

programmer, even a very skilled one, could maintain a large software system alone. To

effectively scale modern software systems, programmers must pool their mental capacity to

form a knowledge graph. Software projects which rely on a small set of maintainers tend

to perish due to the so-called bus factor [Cosentino et al., 2015] – large portions of the

knowledge graph are locked inside someone’s head. Successful software projects learn how

to distribute this graph and form connections to the outside world. The knowledge graph

3

which accumulates around a software project contains facts, but it also contains workflows for

programming, debugging, and delivery – common paths through the labyrinth of software

development [Naur, 1985]. Components of this graph can be committed to writing, but

documentation is time-consuming and grows stale over time. What is needed is a system

that offers the benefits of documentation without the burdens of maintenance.

The development of software systems has a second component, the social graph. The

social graph of a successful software project contains product designers, managers and soft-

ware engineers who work in concert to build software that is well-designed, cohesive, and

highly performant. Sometimes this means revising the specification to accommodate engi-

neering challenges, or rewriting source code to remove technical debt. Software design is a

multi-objective optimization process and requires contributors with a broad set of skills and

common set of goals. To produce software that approximates the criteria of its stakeholders,

developers are asked to provide rapid prototypes, and continuously integrate user feedback.

Yet today’s software systems are larger and more unwieldy than ever. So finding ways to

collaborate more effectively is critical to building more intelligent systems.

First, let us consider the mechanical process of writing software with a keyboard.

Integrated development environments (IDEs) can assist developers building complex soft-

ware applications by automating certain repetitive programming tasks. For example, IDEs

perform static analyses and inspections for catching bugs quickly. They provide completion,

refactoring and source code navigation, and they automate the process of building, running

and debugging programs. While these tasks may seem trivial, their automation promises

increased developer productivity by delivering earlier feedback, detecting clerical errors, and

freeing mental resources to be used elsewhere. Rather than being forced to concentrate

on the structure and organization of text, if developers are able to manipulate code at a

semantic level, they will be much happier and more productive. Furthermore, by automat-

ing mechanical tasks in software development, these tools free one’s attention towards the

fundamental activity of writing and understanding programs.

But what are IDEs really doing? They are guiding developers through the knowledge

graph of a software project. Consider what a new developer must learn to get up to speed:

in addition to learning the language, developers must learn to use libraries and frameworks

(arguably languages in their own right). They must become familiar with command line tools

4

for software development, from build tools to version control and continuous integration.

They must become familiar with the software ecosystem, programming styles, conventions

and development workflows. And they must learn how to collaborate on a distributed team

of developers. By automating common tasks in an interactive programming environment

and making the graph connectivity explicit through document markup [Goldfarb, 1981] and

projectional editing [Voelter et al., 2014], a well-designed IDE is a tool for graph traversal.

It should come as little surprise IDEs are really graph databases.

In some aspects, the development of intelligent systems is no different than classical soft-

ware engineering. The same principles and best-practices which guide software engineering

are also applicable to intelligent systems. And the same activities, from design to mainte-

nance will continue to play an important role in building intelligent systems. But in other

respects, the generic programming tools used to develop traditional software will require

domain-specific adaptations for learning systems to become truly first-class citizens in the

next generation of intelligent software, particularly in the case of robotics development.

Towards that goal, we developed an IDE for the Robot Operating System (ROS) called

Hatchery. It supports a number of common workflows for ROS development, such as creating

ROS nodes, Gazebo simulator integration, support for remote debugging, static analysis,

autocompletion and refactoring. In Chapter 2 we discuss the implementation of these features

and some of the challenges of building language support, programming tools and integrating

with the ROS middleware. We argue that such tools reduce the cognitive complexity of

building ROS applications by adopting explicit coding conventions, annotating unstructured

text and automating repetitive development tasks.

1.2. Implementation: Type-safe differentiable programming

In the early days of machine learning, it was widely believed that human-level intelligence

would emerge from a sufficiently descriptive first-order logic. By accumulating a database of

facts and their relations, researchers believed they could use symbolic reasoning to bypass

learning altogether. This rule-based approach dominated a large portion of early research

in artificial intelligence and considerable effort was poured into the creation of domain-

specific ontologies to capture human knowledge. Despite the best efforts of roboticists, signal

processing engineers and natural language researchers, expert systems were unable to scale to

5

https://www.ros.org/
https://github.com/duckietown/hatchery

real-world applications, causing a great disillusionment in artificial intelligence research for

several decades. While computer scientists underestimated the difficulty of learning, expert

systems excelled in areas where current machine learning systems struggle such as classical

reasoning and interpretability, and there is growing evidence to suggest many of these ideas

were simply ahead of their time. In our work, we take inspiration from some early work

in symbolic reasoning [Dwyer et al., 1948, Glushkov et al., 1971], type systems [Lof et al.,

1973, Jay and Sekanina, 1997] and functional programming [McCarthy, 1960, Abelson and

Sussman, 1996].

What was finally shown to scale, is the idea of connectionist learning. By nesting random

function approximators, called perceptrons, and updating the free parameters using back-

propagation [Werbos et al., 1990, Rumelhart et al., 1988], the resulting system is capable of

learning a surprising amount of intelligent behavior. The approach, termed artificial neural

networks (ANNs), can be traced back to the mid-20th century [Ivakhnenko and Lapa, 1965,

Rosenblatt, 1958], but was not fully-realized in silico until after the widespread availability of

cheap computing and large datasets [LeCun et al., 2015]. In theory, a single layer of nesting

is able to approximate any continuous differentiable function [Hornik et al., 1989], but in

practice, learning requires composing many such approximators in a deeply nested fashion,

hence the term, deep neural networks (DNNs). The importance of depth was suspected for

many years, but the original backpropagation algorithm had difficulty training DNNs due to

the vanishing gradient problem [Bengio et al., 1994]. Solving this problem required a number

of adaptations and many years to fully debug. It was not until circa 2013 when deep learning

was competitive with human experts in specific domains.

While it took fundamental research in deep learning to realize the connectionist blueprint,

the success of modern deep learning can be partly attributed to software tools for calculating

mathematical derivatives, a key step in the backpropagation algorithm. Although it has not

yet been established if or how derivatives might be calculated in biological circuits, derivatives

are essential for ANN training. For many years, the symbolic form of these derivatives were

analytically derived when prototyping a new neural network architecture, a tedious and

error-prone process. There is a well-known algorithm in the scientific computing community

dating back to the 1970s, called automatic differentiation (AD) [Linnainmaa, 1976, Griewank

et al., 1989], which is able to calculate derivatives for arbitrary differentiable functions. But

6

surprisingly, it was not until much later, after the development of Theano [Bergstra et al.,

2010] when AD became widely adopted in the machine learning community. This library

greatly accelerated the pace of deep learning research and spurred the development of other

AD frameworks like TensorFlow [Abadi et al., 2016] and PyTorch [Paszke et al., 2019].

Engineered intelligent systems must think carefully about languages and abstractions. If

developers are to implement backpropagation by hand, they will have scarce time to think

about the high-level characteristics of these systems. Similarly, if programming abstractions

are too specific, small variations will require costly reimplementation. This is no different

from traditional software engineering – as engineers, we need to choose the right abstractions

for the task at hand. Too low-level and the design is lost in the details – too abstract and the

details are lost completely. With deep learning, the necessity of choosing good abstractions

is even more important, as the relationship between source code and behavior is already

difficult to debug, due to the complexity of neural networks and array programming. One

component of that complexity can be found in the type system.

Most existing AD frameworks for machine learning are written in dynamically-typed lan-

guages like Python, Lua and JavaScript, with some early implementations including projects

like Theano [Bergstra et al., 2010], Torch [Collobert et al., 2002] and Caffe [Jia et al., 2014].

Similar ideas have arisen in statically-typed, functional languages, such as Java (JAutoD-

iff [Nureki, 2012], DL4J [Team, 2016a], Hipparchus [Andrea and Maisonobe, 2016]), Scala

(Nexus [Chen, 2017]), F# (DiffSharp [Baydin et al., 2015b]), Swift [Lattner and Wei, 2018],

Haskell (TensorSafe [Piñeyro et al., 2019]) et al., but few of these are able to check the shape

of multidimensional arrays in their type system, and those which do are implemented in

experimental languages with dependent types. In our work, we demonstrate the viability of

shape-checking in a widely-used language. This ensures that programs on matrices, if they

compile, are the correct shape and can be numerically evaluated at runtime.

Kotlin∇ is an embedded domain-specific language (eDSL) for differentiable programming

in a language called Kotlin, a statically-typed programming language with support for asyn-

chronous programming and multi-platform compilation. In Kotlin∇ (Chapter 3), we describe

an algebraically-grounded implementation of automatic differentiation with shape-safe ten-

sor operations. Our approach differs from most existing AD frameworks in that Kotlin∇

7

http://deeplearning.net/software/theano/
http://torch.ch/
https://caffe.berkeleyvision.org/
https://github.com/uniker9/JAutoDiff
https://github.com/uniker9/JAutoDiff
https://deeplearning4j.org/
https://github.com/Hipparchus-Math/hipparchus
https://tongfei.me/nexus/
http://diffsharp.github.io/DiffSharp/
https://www.tensorflow.org/swift
https://github.com/leopiney/tensor-safe
https://github.com/breandan/kotlingrad/
https://kotlinlang.org

is the first shape-safe AD library fully compatible with the Java type system, requiring no

metaprogramming, reflection or compiler intervention to use.

1.3. Verification: Testing intelligent systems

Most naturally arising phenomena, particularly those related to vision, planning and

locomotion are high dimensional creatures. Richard Bellman famously coined this problem

as the “curse of dimensionality” [Bellman, 1957]. Our physical universe is populated with

problems which are simple to pose, but seemingly impossible to solve inside of it. Claude

Shannon, a contemporary of Bellman, calculated the number of unique chess games to exceed

10120, more than the number of atoms in the universe by approximately forty orders of

magnitude [Shannon, 1950]. At the time, it was believed that such problems would be

insurmountable without fundamental breakthroughs in algorithms and computing machinery.

Indeed, while Bellman or Shannon did not live to see the day, it took only half a century of

progress in computer science [Campbell et al., 2002] before solutions to problems with the

same order of complexity, first discovered in the Cambrian explosion 541 million years ago,

were implemented to a competitive margin on modern computers [Pratt, 2015].

While computer science has made enormous strides in solving the common cases, Bell-

man’s curse of dimensionality still haunts the long tail of machine learning, particularly

for distributions that are highly dispersed. Because the dimensionality of many real-world

functions that we would like to approximate is intractably large, it is difficult to verify the

behavior of a candidate solution in all regimes, especially in settings where failure is rare but

catastrophic. According to some studies, humans drivers average 1.09 fatalities per hundred

million miles [Kalra and Paddock, 2016]. A new software build for an autonomous vehicle

would need to accumulate 8.8 billion miles of driving in order to approximate the fatality

rate of a human operator to within 20% with a 95% confidence interval. Deploying such a

scheme in the real-world would be logistically, not to mention ethically, problematic.

Realistically speaking, intelligent systems need better ways to practice their skills and

probe the effectiveness of a candidate solution within a limited computational budget, with-

out harming humans in the process. The goal of this testing is to highlight errors, but

ultimately to provide feedback to the system. In software engineering, the real system under

8

test are the ecosystem of humans and machines which provide each other’s means of subsis-

tence. The success of this arrangement depends on an external testing mechanism to enforce

a minimum bar of rigor, typically some form of hardware- or human-in-the-loop testing.

If the testing mechanism is not somehow opposed to the system under test, an intelligent

system can deceive itself, which is neither in the system’s nor its users’ best interest.

More broadly, we can view type checking (Chapter 3) and automated testing (Chapter 4)

as part of a larger toolset for software verification and validation. The sooner anomalies are

detected, the easier they are to fix and the safer autonomous systems can become. Previous

automated testing approaches have required considerable domain expertise to successfully

deploy, but recent progress in metamorphic testing [Chen et al., 1998] and self-supervised

learning [Lieb et al., 2005] have shown applications in increasingly general domains [Zhang

et al., 2020]. Towards that goal, in Chapter 4 we propose a novel algorithm inspired by

property-based testing and adversarial learning which empirically improves data efficiency,

and requires far less domain expertise to implement than naïve property-based methods.

1.4. Maintenance: Tools for reproducible robotics

One of the challenges of building intelligent systems and programming in general, is

the problem of reproducibility. Software reproducibility has several challenging aspects,

including hardware compatibility, operating systems, file systems, build systems, and runtime

determinism. While writing programs and feeding them directly into a computer may have

once been common practice, today’s source code is far too removed from its mechanical

realization to be meaningfully executed in isolation. Today’s handwritten programs are

like schematics for a traffic light – built inside a factory, and which require a city’s-worth

of infrastructure, cars, and traffic laws to serve their intended purpose. Like traffic lights,

source code does not exist in a vacuum – built by compilers, interpreted by virtual machines,

executed inside an operating system, and which follow a specific communication protocol –

programs are essentially meaningless abstractions outside this context.

As necessary in any good schematic, much of the information required to build a program

is divided into layers of abstraction. Most low-level instructions carried out by a computer

during the execution of a program were not written nor intended to be read by the program-

mer and have since been automated and forgotten. In a modern programming language like

9

Java, C# or Python, the total information required to run a simple program often numbers

in the trillions of bits. A portion of that data pertains to the software for building and run-

ning programs, including the build system, software dependencies, and development tools.

Part of the data pertains to the operating system, firmware, drivers, and embedded software.

For most programs, such as those found in a typical GitHub repository, a vanishingly small

fraction of the information corresponds to the source code itself.

Applied machine learning shares many of the same practical challenges as traditional

software development, with source code, release and dependency management. The current

process of training a deep learning model can be seen as particularly long compilation step,

but it differs significantly in that the source code is a high-level language which does not

directly describe the computation being performed, but is a kind of meta-meta-program. The

first meta-program describes the connectivity of a large directed graph (i.e. a computation

graph or probabilistic graphical model), parameterized by weights and biases. The tuning of

those parameters is another meta-program, describing the sequence of operations required to

approximate a program which we do not have access, save for some input-output examples.

Emerging techniques in meta-learning and hyper-parameter optimization (e.g. differentiable

architecture search [Liu et al., 2018]) add even further meta-programming layers to this

stack, by searching over the space of directed graphs themselves.

Hardware manufacturers have developed a variety of specialized accelerators to train

and run these programs rapidly. But unlike most programming, deep learning is a much

simpler model of computation – so long as a computer can add and multiply, it has the

ability to run a deep neural network. Yet due to the variety of hardware platforms which

exist and the software churn associated with them, reproducing deep learning models can be

painstakingly difficult on new hardware, even with the same source code and dependencies.

Many graph formats, or intermediate representations (IRs) in compiler parlance, promise

hardware portability but if developers are not careful, their models may not converge during

training, or may produce different results on different hardware. Complicating the problem,

IRs are produced by competing vendors, selling competing chips with incompatible standards

(e.g. MLIR [Lattner et al., 2020], ONNX [Bai et al., 2019], nGraph [Cyphers et al., 2018],

Glow [Rotem et al., 2018], TVM [Chen et al., 2018] et al.) While some have tried to leverage

10

existing compilers such as GHC [Elliott, 2018] or DLVM/LLVM [Wei et al., 2017], there are

few signs of broader interoperability at the time of writing this thesis.

At the end of the day, researchers need to reproduce the work of other researchers, but

the mental effort of re-implementing basic abstractions can impede scientific progress. Tools

which facilitate software reproducibility and incremental development are essential. Fortu-

nately, this is the same problem which has concerned the software industry for many years

and produced a variety of version control systems (VCS). But VCS alone is insufficient, since

these tools are primarily intended to store text. Text-based representations are temporarily

stable, but when dependencies are updated and rebuilt, important details about the original

development environment can be misplaced. To reproduce a program in its entirety, a snap-

shot of all digital information available during execution, and ideally, the physical computer

itself is needed. Short of a full snapshot, the minimal set of dependencies and a near physical

replica is highly desirable. Any variability in the physical or digital dependency graph can

be a source of discrepancies which requires time and energy to later isolate.

In order to mitigate the effects of software variability and assist the development of

intelligent systems on heterogeneous platforms, we use a developer tool called Docker, part

of a loosely-related set of tools for build automation and developer operations which we shall

refer to as container infrastructure. Docker allows developers to freeze a software application

and its host environment, allowing developers (e.g. using a different environment) to quickly

reproduce these applications. Docker itself is a technical solution, but also encompasses a

set of best-practices and guidelines which are more methodological in nature. While Docker

does not address the incompatibility of vendor standards and hardware drivers, it makes

these variables explicit, and reduces the difficulty of reproducing software artifacts.

There is a second component to software reproducibility of intelligent systems, which

incorporates the notion of time: simulators. Simulators are used in nearly every engineering

discipline to imitate a physical process which may be expensive, dangerous or impractical to

bring into reality. For example, simulators are often used to model the dynamics of another

instruction set architecture [Bellard, 2005], the dynamics of electromagnetic transients [Ta-

vante et al., 2018], the dynamics of orbital motion [Bellman et al., 1965], the dynamics of

human transportation systems [Ruch et al., 2018], or the dynamics of driving [Chevalier-

Boisvert et al., 2018]. Today’s computers are capable of running increasingly high fidelity

11

https://www.docker.com

simulations, but most practitioners agree that simulation alone will never be enough to cap-

ture the full distribution of real-world data. In this view, simulation can be a useful tool

for detecting errors, but it cannot fully reproduce all the subtleties of the real-world, and

should not be a surrogate for testing on real-world data. Others have suggested a middle

road [Bousmalis et al., 2018], where judicious use of simulator training, alongside domain

adaptation is a sufficiently rigorous environment for evaluating intelligent systems. Regard-

less of which view prevails, our goal is to provide rapid feedback to developers, and to make

the entire process from testing to deployment as reproducible as possible.

1.5. Contributions

Kernighan and Plauger [1976] first introduce the term software tools in the context of Unix

command line utilities, roughly in the same spirit as tools this thesis proposes. Thrun [2000],

Erez et al. [2015] develop language and simulation based tools for robotics development along

the same lines. Broadly, we consider any software which assists users engaged in the activity

of writing computer programs, as a programming tool.

In this thesis we take small steps towards reducing the complexity of programming in-

telligent systems, through programming tools. First, we show a plugin for building robotics

applications (Chapter 2). Next, we describe a domain specific language for writing differ-

entiable programs (Chapter 3). Using our DSL (Chapter 4) as a vehicle, we develop an

adversarial framework for testing differentiable programs and empirically demonstrate its

efficiency compared to a probabilistic sampling method. We then discuss a container-based

solution for reproducing robotics programs, and more broadly any embedded software sys-

tem with visuomotor capabilities (Chapter 5). Finally, in Chapter 6 we offer some reflections

and predictions for the future of intelligent systems programming. Much work remains on

the road ahead. We believe the future is bright and hope those devoted to building it will

take some inspiration from the directions proposed herein.

12

1.6. Iconography

Throughout this thesis, the following iconography is used to denote:

Shell commands intended for a personal computer, or output derived thereof.

GrammarKit’s .bnf parsing expression grammar (PEG) 2

Either Dockerfile 3 or Docker Compose 4 syntax.

Shell commands which should be run on a Raspberry Pi.5

Duckietown Shell (dts) commands.6

roslaunch .launch files.7

Python source code.8

Kotlin source code.9

2GrammarKit usage notes: https://github.com/JetBrains/Grammar-Kit/blob/master/HOWTO.md
3Dockerfile reference: https://docs.docker.com/engine/reference/builder/
4Compose file reference: https://docs.docker.com/compose/compose-file/
5Raspberry Pi: https://www.raspberrypi.org/
6Duckietown Shell: https://github.com/duckietown/duckietown-shell-commands
7ROS Launch XML: https://wiki.ros.org/roslaunch/XML
8Python documentation: https://www.python.org/doc/
9Kotlin documentation: https://kotlinlang.org/docs/reference/

13

https://github.com/JetBrains/Grammar-Kit/blob/master/HOWTO.md
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/compose/compose-file/
https://www.raspberrypi.org/
https://github.com/duckietown/duckietown-shell-commands
https://wiki.ros.org/roslaunch/XML
https://www.python.org/doc/
https://kotlinlang.org/docs/reference/

Chapter 2

Programming tools for robotics

“The hope is that, in not too many years, human brains and computing ma-

chines will be coupled together very tightly, and that the resulting partnership

will think as no human brain has ever thought and process data in a way not

approached by the information-handling machines we know today.”

–Joseph Licklider [1992], Man-Computer Symbiosis

In this chapter we will discuss the design and implementation of an integrated devel-

opment environment (IDE) for building intelligent robotic software. Modern robots are

increasingly driven by systems which learn and improve over time. Most researchers would

agree that modern robotic systems have not yet achieved biologically competitive sensori-

motor capabilities and most intelligent systems are not physically embodied. However, it is

our view that any closed-loop control system that is not explicitly programmed to perform

a specific task, but which learns it from experience is an intelligent system. Furthermore,

any closed-loop system with physical motors is a robotic system. While research has demon-

strated successful applications in both areas separately, it is widely believed the integration

of intelligent systems and robotics will be tremendously fruitful when fully realized.

Hatchery is a tool designed to assist programmers writing robotics applications using

the ROS middleware. At the time of its release, Hatchery was the first ROS plugin for the

IntelliJ Platform 1, and today, is the most widely used with over 10,000 unique downloads.

While the idea is simple, its prior absence and subsequent adoption suggest there is unmet

demand for such tools in the development of intelligent software systems, particularly in

domain-specific applications like robotics.

1An IDE platform for C/C++, Python and Android development, among other languages.

https://groups.csail.mit.edu/medg/people/psz/Licklider.html
https://github.com/duckietown/hatchery
https://www.jetbrains.org/intellij/sdk/docs

20
17

-1
2

20
18

-0
1

20
18

-0
2

20
18

-0
3

20
18

-0
4

20
18

-0
5

20
18

-0
6

20
18

-0
7

20
18

-0
8

20
18

-0
9

20
18

-1
0

20
18

-1
1

20
18

-1
2

20
19

-0
1

20
19

-0
2

20
19

-0
3

20
19

-0
4

20
19

-0
5

0

500

1,000

1,500

25 42 64 51 37 51 64

829 674
930 861 718 835 805

1,019

1,707
1,379

790

D
ow

nl
oa

ds
Unique downloads of Hatchery

Fig. 2.1. Unique downloads of Hatchery between the time of its release and June 2019.

https://plugins.jetbrains.com/plugin/10290-hatchery.

2.1. Introduction to the Robot Operating System

The Robot Operating System (ROS) [Quigley et al., 2009] is a popular middleware for ro-

botics applications. At its core, ROS provides software infrastructure for distributed messag-

ing, but also includes a set of community-developed libraries and graphical tools for building

robotics applications. ROS is not an operating system (OS) in the traditional sense, but it

does support similar functionality such as shared memory and inter-process communication.

Unlike pure message-oriented systems such as DDS [Pardo-Castellote, 2003] and ZMQ [Hin-

tjens, 2013], in addition to the communication infrastructure, ROS provides specific APIs

for building decentralized robotic systems, particularly those which are capable of mobility.

This includes standard libraries for serializing and deserializing geometric data, coordinate

frames, maps, sensor messages, and imagery.

The ROS middleware provides several language front-ends for polyglot programming.

According to one community census taken in 2018, 55% of all ROS applications on GitHub

are written in C/C++, followed by Python with a 25% [Guenther, 2018] developer share.

Source code for a typical ROS application contains a mixture of C/C++ and Python code,

corresponding to the respective language preferences in the robotics and machine learning

communities. Hatchery is compatible with most common ROS client libraries, including

rosjava for Java, rospy for Python, roscpp for C/C++, and other language front ends.

A typical ROS project has several components, including the source code, configuration

files, build infrastructure, compiled artifacts and the deployment environment. To build a

16

https://plugins.jetbrains.com/plugin/10290-hatchery
https://www.ros.org/
https://zeromq.org/
https://wiki.ros.org/rosjava
https://wiki.ros.org/rospy
https://wiki.ros.org/rospy

Fig. 2.2. A typical ROS application contains a large graph of dependencies.

simple ROS application, several steps are necessary. First, one must install the ROS system,

which is only officially supported on Debian-based Linux distributions.2 Assuming ROS has

been installed to the default location, it can be sourced like so:

 source /opt/ros/<ROS DISTRO>/setup.[ba]sh

A minimal ROS application contains at least one publisher and subscriber, which pass mes-

sages over a shared communication channel. The publisher might be defined as follows:

./catkin_ws/src/pubsub/publisher.py

import rospy

from std_msgs.msg import String

pub = rospy.Publisher("channel", String, queue_size=10)

rospy.init_node("publisher", anonymous=True)

rate = rospy.Rate(10)

while not rospy.is_shutdown():

pub.publish("Some message")

rate.sleep()

As the publisher writes messages to channel, another node which is subscribed to the same

channel will receive a callback when new messages arrive and can read them off the channel:

2Detailed installation instructions may be found here: https://wiki.ros.org/ROS/Installation

17

https://wiki.ros.org/ROS/Installation

./catkin_ws/src/pubsub/subscriber.py

def callback(data):

rospy.loginfo(rospy.get_caller_id() + "received data %s", data.data)

rospy.init_node("subscriber", anonymous=True)

rospy.Subscriber("channel", String, callback)

rospy.spin()

All ROS packages have launch file, which contain a manifest of available nodes:

./catkin_ws/src/pubsub/pubsub.launch

<launch>

<node name="publisher" pkg="pubsub" type="publisher.py" output="screen"/>

<node name="subscriber" pkg="pubsub" type="subscriber.py" output="screen"/>

</launch>

To build and run the application, the following series of commands are required:

 cd catkin_ws && catkin_make

 roslaunch pubsub pubsub.launch

Rather than interacting with the command line, it would be convenient to have a graphical

tool to perform all of these tasks automatically. Additionally, it would be helpful to detect

if there were a typographical error or navigable reference in the launch file:

./catkin_ws/src/pubsub/pubsub.launch

<launch>

<node name="publisher" pkg="pubsub" type="pubsher.py" output="screen"/>

<node name="subscriber" pkg="pubsub" type="subscriber.py" output="screen"/>

</launch>

Notice how the typographical error is printed in red and the valid file reference is underlined

in blue, indicating it can be selected to open the file shown above. Broadly, these are the

kinds of features IDEs provide and are examples of specific functionality in Hatchery.

18

2.2. Installation

To simply run the tool, users should have the following software dependencies:

(1) MacOS or Debian-based Linux distribution

(2) Robot Operating System (Electric Emys or later)

(3) Java SE (JRE 8+) or CLion/PyCharm 2019.1+

ROS users can use the following command to open an existing ROS project:

 git clone https://github.com/duckietown/hatchery && cd hatchery && \

./gradlew runIde [-Project="<ABSOLUTE_PATH_TO_ROS_PROJECT>"]

Duckietown users can simply use dts, the Duckietown Shell:

 hatchery

Hatchery can also be installed directly from inside the CLion or PyCharm IDEs, via the

following menu options: File Settings Plugins Marketplace “Hatchery”

2.3. Plugin development

To build an IDE, some tools are helpful. First, is an IDE, and its source code. Assume

that IDE0 exists. In order to build a new IDE, IDE1, we can load the source code from

IDE0 into IDE0 and use IDE0 to modify, compile and re-run the code, which becomes IDE1,

in which the process is repeated. However, this approach has some disadvantages. First,

most IDEs are already quite cumbersome to compile and run. As most auxiliary features

are small by comparison, modern IDEs have adopted a modular design, which allows them

to load specific packages (i.e. plugins) as needed. So most developers can skip the first step,

and load their plugin inside IDE0 directly. It is still convenient to have the platform source

code for reference purposes, but in most cases this code is read-only.

Hatchery uses the IntelliJ Platform, an IDE platform which supports most common pro-

gramming languages. By targeting an IDE platform with support for polyglot programming,

Hatchery is able to focus on language-agnostic features in the ROS ecosystem, such as parsing

and editing ROS-specific configuration files, build and run configuration and other common

development tasks.

19

https://www.jetbrains.org/intellij/sdk/docs/

2.3.1. Refactoring

Refactoring is an essential feature in any IDE, and the essence of refactoring is renaming.

Consider what must occur when a user wishes to rename a token in her program, such as

the parameter named data on line #1 below:

def callback(data):

rospy.loginfo(rospy.get_caller_id() + "received data: %s", data.data)

If she were using the vim text editor, one solution would be to replace all textual occurrences

of the string data within the file using :%s/data/msg/g, producing the following result:

def callback(msg):

rospy.loginfo(rospy.get_caller_id() + "received msg: %s", msg.msg)

There were four occurrences of the string data, only two of which were correctly renamed.

Instead, only those strings which refer to the function parameter should be renamed:

def callback(data):

rospy.loginfo(rospy.get_caller_id() + "received data: %s", data .data)

Generally, we would like the ability to rename identifiers across files and languages. To do

so, we need a richer understanding of code that transcends text – we need a parser.

2.3.2. Parsing

One of the most important and unappreciated components of an IDE is the parser. Unlike

compilers, most IDEs do not use recursive descent or shift-reduce parsing as treated in most

compiler textbooks [Appel and Palsberg, 2003], as these algorithms are not well-suited for

real-time editing of source code. Edits are typically short, localized changes inside a large

file, and are frequently invalid or incomplete between keystrokes. As most IDEs are expected

to recover from local errors and provide responsive feedback while editing source code, re-

parsing the entire program between minor edits would be expensive and unnecessary. In

order to analyze source code undergoing simultaneous modification and provide interactive

feedback, special consideration must be taken to ensure robust and responsive parsing.

20

Various techniques have been developed to improve the responsiveness of modern parsers.

Incremental parsing techniques like those first proposed in Ghezzi and Mandrioli [1979] and

further developed by Wagner [1998], Wagner and Graham [1997] seek to incorporate caching

and differential parsing to accelerate the analysis of programs under simultaneous modifi-

cation. Fuzzy parsing techniques like those described in Koppler [1997] aim to increase the

flexibility and robustness of parsing in the presence of local errors. Both of these techniques

have played a role in the development of language-aware programming tools, which must be

able to provide rapid and specific feedback whilst the user is typing.

The procedural instructions for modern parsers are seldom written by hand unless the

language being parsed is very simple or raw performance is desired. Even parsers designed

for IDEs, where incremental parsing and error-tolerance is so important, metacompilation

toolkits such as ANTLR [Parr and Quong, 1995], or Xtext [Eysholdt and Behrens, 2010] cover

a surprising number of common use-cases. Hatchery uses Grammar-Kit, a toolkit designed

to assist users developing custom language plugins for the IntelliJ Platform. It uses a DFA-

based lexer generator, JFlex [Klein et al., 2001], and a custom parser-generator loosely based

on the parsing expression grammar (PEG) [Ford, 2004], a descendant of the Backus-Naur

Form (BNF) grammar specification. This specification is consumed by the GrammarKit

parser generator and translated to Java source code, producing a parser which reads source

code written in the specified language and constructs a program structure interface (PSI),

the IntelliJ Platform’s internal data structure for representing abstract syntax trees (ASTs).

Here is an excerpt of a PEG BNF grammar for parsing ROS .msg files:

rosInterfaceFile ::= (property | COMMENT)*

property ::= (TYPE FIELD SEPARATOR CONSTANT) | (TYPE FIELD) {

pin=3 // Identifies an unambiguous delimiter or fallback point

recoverWhile="recover_property" // Error recovery predicate

mixin="edu.umontreal.hatchery.psi.impl.RosMsgNamedElementImpl"

implements="edu.umontreal.hatchery.psi.RosMsgNamedElement"

methods=[getType getKey getValue getName setName getNameIdentifier]

}

private recover_property ::= ! (TYPE | FIELD | SEPARATOR | COMMENT)

The lexical rules for the tokens, TYPE, FIELD, CONSTANT et al. are defined in a separate .flex

21

https://github.com/JetBrains/grammar-kit
https://www.jetbrains.org/intellij/sdk/docs
https://wiki.ros.org/msg

2
TYPE FIELD �

�SEPARATOR CONSTANT

�
�

�

�1
COMMENT

�

�
Fig. 2.3. Railroad diagram for the grammar shown above (reads from left to right).

file, the JFlex grammar. Below is an excerpt from the accompanying .flex lexer:

TYPE_CHARACTER=[^:=#\ \r\n\t\f\\]

FIELD_CHARACTER=[^:=#\ \r\n\t\f\\]

SEPARATOR_CHARACTER=[:=]

CONSTANT_CHARACTER=[^\r\n\f#]

COMMENT_CHARACTER=#[^\r\n\f]*

Grammar-Kit consumes these files and generates Java source code for parsing ROS .msg

files. Generated sources can be manually refined to provide support for more advanced

functionality such as more flexible error-recovery. For regular languages like the interface

description languages (IDL) found in ROS .msg and .srv files, the default generated parser

and lexer are usually sufficient. Hatchery is also capable of parsing URDF, package manifest

and roslaunch XML.

2.3.3. Running and debugging

The process of compiling and running ROS applications often requires several steps, ex.:

 . /opt/ros/<DISTRO>/setup.[ba]sh &&

cd <PROJECT>/catkin_ws &&

catkin_make &&

. devel/setup.sh &&

[export ROS_MASTER_URI=<URI> &&]

roslaunch [OPTIONS] src/.../<LAUNCH FILE> [ARGUMENTS]"

Hatchery provides assistance for configuring, building and running ROS applications inside a

custom graphical user interface (GUI). This GUI effectively serves as a wrapper for the ROS

command line interface (CLI). Visual elements like configuration options and command line

22

https://www.jflex.de/manual.html#Grammar
https://wiki.ros.org/msg
https://wiki.ros.org/msg
https://wiki.ros.org/srv
https://wiki.ros.org/urdf
https://wiki.ros.org/Manifest
https://wiki.ros.org/roslaunch/XML

Fig. 2.4. ROS Run Configuration. Accessible via: Run Edit Configurations + ROS Launch

flags are written to an internal model called the “Run Configuration” (Fig. 2.4). When a

run configuration is manually triggered, Hatchery’s internal model is serialized to a String,

representing the command to be executed. This String is then sent to a terminal emulator,

which invokes the command and displays the corresponding output.

2.3.4. User interface

An often overlooked, but important aspect of development tools is the graphical user

interface, as the primary interface for editing source code. In the early days of modern

computing, the only way of getting information in or out of a computer involved punching

holes in paper Fig. 2.5. Later, computers were equipped with technology to emit the same

binary pattern as pixels, which could be used to display a small alphabet called ASCII. With

higher density and frequency displays, computers could render more sophisticated shapes and

animations. These improvements are the direct result of graphical innovation, but can also

be seen as progress in program representation, where the symbolic medium was itself just a

notational convention which developers and machines used to communicate.

ASCII is still the dominant medium for modern programming, although machines still use

various forms of low-level assembly code for execution. A great deal of software infrastructure

23

Fig. 2.5. The evolution of code. On the left are languages that force the user to adapt to

the machine. To the right are increasingly flexible representations of source code.

Fig. 2.6. Projectional editors such as MPS [Voelter and Solomatov, 2010, Pech et al., 2013]

(shown above) are able to render source code in visually creative ways. This might resemble

freehand notation or some other visually appealing format.

is dedicated to translating between such representations via programming languages and

compilers. While many software frameworks provide a minimal command line interface

(CLI) and some even provide sophisticated programming environments, these tools are fairly

restrictive. In the same way that early computer scientists probably did not invent new

algorithms by imagining patterns of holes in paper, ASCII is also an indirect medium for

expressing ideas, albeit one slightly less contrived. As hardware and software technology

progressed, programming languages moved “up the stack”, allowing their users to express

ideas in a notation which was more familiar and easy to reason about its execution.

With the development of modern languages came programming tools capable of repre-

senting code as a mixture of hypertext and graphical user interfaces. Such tools provide

a richer representation for code than plaintext and help to capture programs’ graph-based

24

https://www.jetbrains.com/mps/

structure, but still use ASCII with sparse visual cues to render code. Some tools support

larger character sets and font-based typographic ligatures, although the visual representation

of source code remains mostly linear and textual.

More experimental UIs, as proposed in the language oriented programming [Dmitriev,

2004] and model-driven engineering [Famelis et al., 2015] literature, suggest the possibility of

more visually flexible layouts. This uncoupling between the composition and representation

of source code raises many intriguing questions. With the proliferation of new abstractions

and programming shorthands, what is the appropriate level of notation required for a given

programming task? And who is the intended audience? These are important questions to

consider when designing a new programming tool.

The Hatchery plugin provides a lightweight GUI overlaying the program’s source code.

This interface (Fig. 2.7) primarily consists of simple visual cues such as text highlighting,

navigation assistance and other menus and configuration panels for performing various pro-

gramming tasks. The host IDE offers a design language consisting of iconography and repet-

itive visual motifs, which serve as cognitive landmarks to guide the developer’s procedural

memory. The IntelliJ Platform offers a palette of common design elements, which users who

are familiar with the IDE can recognize at a glance. Plugins can use these same patterns to

access procedural memories implanted in the userbase, facilitating transfer learning. Hatch-

ery also provides a settings menu for configuring and managing ROS installations, which can

automatically detect local ROS distributions and also allows users to manually configure the

ROS environment, as shown in and Fig. 2.8.

2.4. Ongoing work

While it supports many common use cases such as rudimentary code navigation, static

analysis and run assistance, Hatchery is currently a work in progress. We are working to

expand Hatchery’s support for ROS programming in some of the following areas:

• Syntax support – Highlighting, navigation, autocompletion

• Program analysis – Code inspections, intentions, and linting

• Project creation – Project setup and boilerplate code generation

• Dependency management – Track installed and missing packages

• Monitoring utils – Logging, diagnostics, profiling and visualization

25

https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment

• Crash analytics – Enhanced stack traces with source navigation

• Build automation – Delta rebuilds, cmake magic, code hotswap

Fig. 2.7. Hatchery’s UI supports syntax highlighting, validation and project navigation.

Fig. 2.8. Detection of local ROS packages. Accessible via: File Settings ROS config

26

A more comprehensive list of currently supported and upcoming features are detailed below:

□3 ROS Launch (*.launch, *.test)

□3 Syntax highlighting

□3 Resource references ($(find <di

rectory>)ȂȂ...)

□3 Package manifest (package.xml)

□3 Syntax highlighting

□3 Package dependencies (<build_depend>,

<test_depend>, <run_depend>)

□3 ROS URDF (*.urdf.xacro)

□3 Syntax highlighting

□3 Resource references ($(find <di

rectory>)ȂȂ...)

□3 ROS Bag (*.bag)

□3 Syntax highlighting

□3 ROS Message (*.msg)

□3 ROS Service (*.srv)

□3 Implement preliminary project struc-

ture and XML support

□3 Write an MVP/POC app that sup-

ports file renaming and refactoring

□3 Add support for project templates

and skeleton project creation

□3 Add support for deploying a project

from the local machine to the remote

□ Add support for monitoring and

tracking running code, viewing logs

□ Live logfile tracking

□ Save to local disk

□ Searching the log

□ Collect crash dumps and link to the

corresponding code points

□ Link stack traces to source code

□ Copy environment info and crash

dump to clipboard

□ Integration with the Robot Operating

System (ROS)

□3 ROS 1 support (Kinetic Kame

recommended)

□ ROS 2 support

□3 Managing ROS installations.

□3 Gazebo simulator integration

□ CMake build integration

□ Remote debugging support

□ Docker integration

□3 Basic Docker support

□ Remote host and script support

□ Docker Hub namespace awareness

□ Support for platformio tooling

□ X11 forwarding and rqt support

□ Static analysis for Python API misuse

□3 Invalid dependency detection

□ Validate .msg/.srv compatibility

□ ROS nodes and graph analysis via

rosdep/rqt_dep

□3 rqt plugin support

□3 rqt_img_view - View images

□3 rqt_graph - Graph messages

□3 rqt_dep - Visualize dependencies

27

https://wiki.ros.org/roslaunch/XML
https://wiki.ros.org/rostest/Writing
https://wiki.ros.org/Manifest
https://wiki.ros.org/catkin/package.xml#Dependencies
https://wiki.ros.org/Bags/Format
https://wiki.ros.org/msg
https://wiki.ros.org/srv
https://www.ros.org
https://www.ros.org
https://wiki.ros.org/kinetic
https://github.com/ros2/ros2/wiki
http://gazebosim.org/
https://hub.docker.com
https://platformio.org
https://wiki.ros.org/rqt
https://wiki.ros.org/rospy
https://wiki.ros.org/rosdep
https://wiki.ros.org/rqt_dep
https://wiki.ros.org/rqt
https://wiki.ros.org/rqt_image_view
https://wiki.ros.org/rqt_graph
https://wiki.ros.org/rqt_dep

2.5. Future work

IDE plugins like Hatchery improve developer productivity and software quality in domain

specific languages and frameworks. Key to this process is the development of custom parsers

capable of analyzing code and detecting common errors, which in turn requires familiarity

with the ROS programming model. While domain-specific frameworks like ROS have be-

come increasingly versatile, developing and maintaining parsers which support them can be

challenging, especially as those frameworks grow and evolve. Our belief is that parsing is

essentially a skill which can be learned from examples. We are currently investigating ways

to automate the development of context-sensitive parser-generators for domain-agnostic ap-

plications. We believe this approach can be adapted into a meta-learning framework which

is capable of transferring across domains and requires far less human knowledge.

2.6. Conclusion

In this chapter we demonstrate the value of IDEs for general purpose software develop-

ment and present a domain-specific IDE plugin for robotics development, originally developed

as a final project in the Duckietown class [Paull et al., 2017]. By using Hatchery, developers

can receive assistance when writing, compiling and running ROS applications, a popular mid-

dleware framework for robotics development, using the IntelliJ Platform. It offers support for

parsing and static analysis of ROS configuration files, as well as assistance for running and de-

bugging ROS applications. The author wishes to express his gratitude to Paolo Achdjian for

contributing several features, including a custom run configuration and settings menu. For

more information about Hatchery, please visit: https://github.com/duckietown/hatchery.

28

https://github.com/paoloach
https://github.com/duckietown/hatchery

Chapter 3

Type-safe differentiable programming

“Although mathematical notation undoubtedly possesses parsing rules, they are

rather loose, sometimes contradictory, and seldom clearly stated. . . Because of their

application to a broad range of topics, their strict grammar, and their strict interpre-

tation, programming languages can provide new insights into mathematical notation.”

–Kenneth Iverson [1999], Math for the Layman

In this chapter, we will discuss the theory and implementation of a type-safe domain-

specific language for automatic differentiation (AD), an algorithm with a variety of appli-

cations in numerical optimization and machine learning. The key idea behind AD is fairly

simple. A small set of primitive mathematical operations form the basis for all modern com-

puters, and by composing these operations over the real numbers in an orderly fashion, one

can compute any computable function. In machine learning, we are often given a computable

function in the form of a program which does not work properly. We would like an algorithm

for determining how to change the input slightly, to produce a more suitable output.

Such an algorithm was first conceived by Wengert [1964], whose method is known today

as forward-mode AD. Shortly thereafter, a certain Richard Bellman reproduced Wengert’s

algorithm to numerically estimate the orbital dynamics of a two-body system, recognizing

its potential for, “the treatment of large systems of differential equations which might not

otherwise be undertaken” [Bellman et al., 1965]. Around the same time, key details of the

backpropagation algorithm first emerged [Dreyfus, 1990]. It was in Linnainmaa [1976] where

the idea of calculating derivatives over computation graphs was first recorded. Linnaimaa’s

algorithm was particularly important for neural networks, and is today known as reverse-

mode AD. But it was not until 2010 when standard software tools [Bergstra et al., 2010] for

AD became widely available in machine learning. It is here where our journey begins.

https://www.cs.trinity.edu/About/The_Courses/cs301/math-for-the-layman/

3.1. Automatic differentiation

Given some input to a function, AD tells us how to change the input by a minimal

amount, in order to maximally change the outputs. Suppose we are handed a function

Pk : R→ R, composed of a series of nested functions, each with the same type:

Pk(x) =

p1 ◦ x = x if k = 1

pk ◦ Pk−1 ◦ x if k > 1
(3.1.1)

From the chain rule, we recall the derivative of a composition is a product of the derivatives:

dP

dp1
=

dpk
dpk−1

dpk−1

dpk−2

. . .
dp2
dp1

=
k−1∏
i=1

dpi+1

dpi
(3.1.2)

Given Q(q1, . . . , qm) : Rm → R, the gradient is a function ∇Q : Rm → R→ Rm defined as:

∇Q =

[
∂Q

∂q1
, . . . ,

∂Q

∂qm

]
(3.1.3)

The Hessian is a function H : Rm → R→ Rm×m returning a matrix of second-order partials:

H(Q) =



∂2Q

∂x21

∂2Q

∂x1 ∂x2
· · · ∂2Q

∂x1 ∂xm

∂2Q

∂x2 ∂x1

∂2Q

∂x22
· · · ∂2Q

∂x2 ∂xm
...

∂2Q

∂xm ∂x1

∂2Q

∂xm ∂x2
· · · ∂2Q

∂x2m


(3.1.4)

For vector functions f : Rm → Rn, the Jacobian, Jf : Rm → Rn → Rn×m is defined as:

Jf =

[
∂f
∂x1

· · · ∂f
∂xm

]
=


∂f1
∂x1

· · · ∂f1
∂xm...

∂fn
∂x1

· · · ∂fn
∂xm

 =


∇f1

...

∇fm

 (3.1.5)

For scalar functions, the transpose of the Hessian is equivalent to the Jacobian of the gradient:

H(Q)⊺ = Jq(∇Q) (3.1.6)

For a vector function Pk(x) : Rm → Rn, the chain rule from Eq. 3.1.2 still applies:

JPk =
k∏
i=1

Jpi =
((

(JpkJpk−1
) . . .Jp2

)
Jp1

)
︸ ︷︷ ︸

“Reverse accumulation”

=

(
Jpk

(
Jpk−1

. . . (Jp2Jp1)
))

︸ ︷︷ ︸
“Forward accumulation”

(3.1.7)

30

For completeness, but rarely used in practice, is the second-order partials for vector functions:

H(f) = [H(f1),H(f2), . . . ,H(fn)] (3.1.8)

We can use these tools to compute the direction to adjust the inputs of a computable function,

in order to maximally change that function’s output, i.e. the direction of steepest descent.

Sometimes a function has the property that given an input a, no matter how a is changed,

the output remains the same. We say that such functions have zero gradient for that input.

(∇F)(a) ≈ 0 (3.1.9)

The cost of calculating the Hessian, H is approximately quadratic [Griewank, 1993] with

respect to the number of independent variables under differentiation. If H(a) is tractable to

compute and invertible, we could use the second-partial derivative test to determine that:

(1) If all eigenvalues of H(a) are positive, a is a local minimum

(2) If all eigenvalues of H(a) are negative, a is a local maximum

(3) If H contains a mixture of positive and negative eigenvalues, a is a saddle point

For some classes of computable functions, small changes to the input will produce a sudden

large change in the output. We say that such functions are non-differentiable.

||(∇F)(a)|| ≈ ±∞ (3.1.10)

It is an open question whether non-differentiable functions exist in the real-world [Buniy

et al., 2005]. At the current physical (10nm) and temporal (10ns) scale of modern comput-

ing, there exist no such functions, but most modern computers are incapable of reporting the

true value of their binary-valued functions. For all intents and purposes, programs imple-

mented by most physical computers are discrete relations. Nevertheless, discrete programs

are capable of approximating bounded functions on Rm to arbitrary precision given enough

time and space. For most applications, a low precision (32-64 bit) approximation is sufficient.

There exists at the heart of machine learning a theorem that states a simple family of

functions, which compute a weighted sum of a non-linear function φ : R → R composed

with a linear function θ⊺x+ b, can approximate any bounded function Rm → R to arbitrary

precision. More precisely, the universal approximation theorem [Hornik et al., 1989] states

31

that for all real-valued continuous functions f : C(Im), where Im = [0, 1]m → [0, 1], there

exists an f̂ : Rm ×Rn×m → R, parameterized by Θ ∈ Rn×m, taking an input x ∈ [0, 1]m and

constants n ∈ N, β ∈ Rn,b ∈ Rn, ϵ ∈ R+ such that following statement holds:

f̂(x; Θ) = β⊺φ⊙ (Θ⊺x + b)

∀x ∈ Im, |f̂(x)− f(x)| < ϵ
(3.1.11)

Where φ⊙ indicates a nonlinear function φ applied elementwise to the vector. This theorem

only tells us that Θ exists, but does not tell us how to find it nor does it place an upper bound

on the constant n, somewhat limiting its practical applicability. But for reasons not yet fully

understood, empirical results suggest it is possible to approximate many naturally-arising

functions in a relatively short number of steps by composing several layers of Θ⊺x+b and φ

in an alternating fashion, and updating each Θ using a procedure based on gradient descent.

The resulting model might be expressed as follows1,

P̂k(x;Θ) =

p̂1(Θ1) ◦ x if k = 1

p̂k(Θk) ◦ P̂k−1(Θ[1,k−1]) ◦ x if k > 1
(3.1.12)

where Θ = {Θ1, . . . ,Θk} are free parameters and x ∈ Rm is a single input. To approximate

P(x), one must obtain X = {x(0), . . . ,x(z)},Y = {y(0) = P(x(0)), . . . ,y(z) = P(x(z))} in as

great and varied a quantity as possible and repeat the following procedure until Θ converges:

Θ← Θ− α1
z
∇Θ

z∑
i=1

L
(
P̂k(x(i);Θ),y(i)

)
(3.1.13)

In the general case, we can solve for the gradient using Eq. 3.1.7. For most common L, the

complexity of this procedure is linear with z. As z can be quite large in practice, and since

obtaining the exact gradient is not important, we use a stochastic variant by resampling a

minibatch X′,Y′ consisting of pairs x(i),y(i) for i ∼ {0, . . . , z} without replacement on each

update step. This is slightly noisier, but runs considerably more quickly.

3.2. Differentiable programming

The renaissance of modern deep learning is widely attributed to progress in three research

areas: algorithms, data and hardware. Among algorithms, most research has focused on deep
1The notation below assumes some familiarity with currying and partial function application, in which

P̂ : Rm → Rn ≡ R→ . . .→ R︸ ︷︷ ︸
m

→ Rn. For further details, see Schönfinkel [1924], Curry and Feys [1958] et al.

32

Fig. 3.1. Differentiable programming includes neural networks, but more broadly, arbitrary

programs which use gradient-based optimization to approximate a loss function. Probabilis-

tic programming [Tristan et al., 2014, Carpenter et al., 2017, Gorinova et al., 2019] is a

generalization of probabilistic graphical models which uses Monte Carlo (MC) methods to

approximate a density function.

learning architectures and representation learning. Equally important, arguably, is the role

that automatic differentiation (AD) has played in facilitating the implementation of these

ideas. Prior to the advent of general-purpose AD libraries such as Theano, PyTorch and

TensorFlow, gradients had to be derived manually. The widespread adoption of AD software

simplified and accelerated the pace of gradient-based machine learning, allowing researchers

to build deeper network architectures and new learning representations. Some of these ideas

in turn, formed the basis for new methods in AD, which continues to be an active area of

research in the programming language and scientific computing communities.

A key aspect of the connectionist paradigm is gradient descent of a statistical loss func-

tion defined on a neural network with respect to its free parameters. For gradient descent to

work, the representation must be differentiable almost everywhere. However, many represen-

tations are non-differentiable in their natural domain. For example, the structure of written

language is not easily differentiable, as small changes to a word’s symbolic form can cause

sudden changes to its semantics [van Merriënboer, 2018]. A key insight from representation

33

http://deeplearning.net/software/theano/
https://pytorch.org/
https://tensorflow.org/
http://www.autodiff.org

learning is that many discrete data types can be mapped into a smoother latent space. For

example, if we represent words as a vector of real numbers, RN , then it is possible to learn

a mapping from words to RN so that semantic relations between words (as defined by their

statistical co-occurrence in large corpora) are geometrically preserved in vector space [Pen-

nington et al., 2014] – words with similar meanings map to similar vectors. Many classes of

discrete problems can be relaxed to continuous surrogates by learning such representations,

or embeddings in an unsupervised, or semi-supervised manner.

Around the same time, the deep learning community realized that perhaps strict differ-

entiability was not so important all along. It was shown in practice, that computers using

8-bit floating point [Wang et al., 2018d] and integer [Wu et al., 2018, Jacob et al., 2017]

arithmetic are able to train neural networks without sacrificing performance. Strong as-

sumptions like Lipschitz-continuity and β-smoothness once thought to be indispensable for

gradient-based learning could be relaxed, as long as the noise introduced by quantization was

negligible compared to stochastic gradient methods. In hindsight, this should have been less

surprising, since all digital computers use discrete representations anyway and were capable

of training neural networks for nearly half a century. This suggests strict differentiability

was not as important as having a good metric. As long as the loss surface permits metric

learning, gradient descent is surprisingly resilient to quantization.

As deep learning developed more applications, researchers observed that neural networks

were part of a broader class of differentiable architectures which could be structured in a man-

ner not unlike computer programs. Hence the term differentiable programming [Olah, 2015,

Baydin, Plotkin, 2018] (DP) was born. Today, DP has many applications, from classical

CS techniques like ranking and sorting [Cuturi et al., 2019, Blondel et al., 2020], to pro-

tein folding [AlQuraishi, 2018], to physics engines [Hu et al., 2019, de Avila Belbute-Peres

et al., 2018, Degrave et al., 2016] and graphics rendering [Loper and Black, 2014] to meta-

learning [Liu et al., 2018, Chandra et al., 2019]. These applications all have parameters that

can be learned via gradient descent. To learn discrete relations without ad hoc embedding,

additional techniques (§ 3.20), such as probabilistic programming, are likely needed. Various

probabilistic programming languages including Stan [Carpenter et al., 2017], Pyro [Bingham

et al., 2019], PyMC4 [Kochurov et al., 2019] et al. have also emerged. As shown in Fig. 3.1,

these two fields have enjoyed many productive collaborations in recent years.

34

3.3. Static and dynamic languages

Most programs in machine learning and scientific computing are written in dynamic

languages, such as Python. In contrast, most of the industry uses statically-typed lan-

guages [Ray et al., 2017]. According to some studies, type-related errors account for over

15% of software bugs [Gao et al., 2017]. While the causality between defectiveness and

static typing has not been conclusively established, dynamically-typed languages are seldom

used for building safety-critical systems, and the majority of robotics applications [Guenther,

2018] are written in statically-typed languages.

Static typing eliminates a broad class of runtime errors, allowing developers and tools

to reason more carefully about the behavior of programs without needing to execute them.

In addition to stronger syntax validation for general-purpose programming, a well-designed

library in a strongly-typed language can eliminate domain-specific errors related to API

misuse that would otherwise require documentation and code samples to avert, improving

usability and reducing maintenance. Furthermore, strong type systems allow IDEs to provide

more precise static analysis tools, such as relevant autocompletion, source code navigation,

and earlier detection of runtime errors.

One common objection to using strongly-typed languages is the additional burden of

manual type annotation [Ore et al., 2018]. While early type-safe languages like C++ and

Java required programmers to exhaustively annotate function and variable declarations, with

judicious use of type inference in modern languages like Kotlin, Scala, Rust et al., most type

signatures can be safely omitted and easily recovered from the surrounding context. Type

inference enables modern languages to offer the brevity of dynamically-typed languages with

the safety of static type checking.

3.4. Imperative and functional languages

Most programs today are written in the imperative style, due the prevalence of the Turing

machine and von Neumann architecture [Backus, 1978]. λ-calculus provides an equivalent2

language for computing, which we argue, is a more appropriate notation for expressing

mathematical functions and computing their derivatives. In imperative programming the

sole purpose of using a function is to pass it values, and there is no way to refer to a function

2In the sense that the Turing Machine and λ-calculus are both Turing complete.

35

Imperative Functional

 fun dot(l1, l2) {

 if (len(l1) != len(l2))

 return error

 var sum = 0

 for (i in 0 to len(l1))

 sum += l1[i] * l2[i]

 return sum

 }

fun dot(l1, l2) {

return if (len(l1) != len(l2))

error

else if (len(l1) == 0) 0

else

head(l1) * head(l2) +

dot(tail(l1), tail(l2))

}

Fig. 3.2. Two equivalent programs, both implementing the function f(l1, l2) = l1 · l2.

without doing so. More troubling in the case of AD, is that imperative programs have

mutable state, which requires taking extra precautions when computing their derivatives.

The mathematical notion for function composition is a first-class citizen in functional

programming. Just like in calculus, to take the derivative of a program composed with

another program, we simply apply the chain rule (§ 3.1). Since there is no mutable state in

FP, no exotic data structures or compiler tricks are required.

For example, consider the vector function f(l1, l2) = l1 · l2, seen in Fig. 3.2. Imperative

programs, by allowing mutation, are effectively destroying intermediate information. In

order to recover the computation graph for reverse-mode AD, we either need to override

the assignment operator, or use a tape to store the intermediate values. In pure functional

programming, mutable variables do not exist, which makes our lives much easier.

Functional programming lets Kotlin∇ use the same abstraction for representing mathe-

matical functions and programming functions. All functions in Kotlin∇ are pure functions,

composed of expressions forming a data-flow graph (DFG). An expression is simply a Func

tion, which is only evaluated when invoked with numerical values, e.g. z(0, 0). In this way,

Kotlin∇ is similar to other graph-based frameworks like Theano and TensorFlow.

3.5. Kotlin

When programming in a statically-typed language, a common question one might ask

the compiler is, “Given a value, x, can x be assigned to a variable of type Y?” (e.g. type

checking x instanceof Y). In Java, this question turns out to be ill-posed [Amin and Tate,

36

http://deeplearning.net/software/theano/extending/graphstructures.html
https://www.tensorflow.org/guide/graphs
http://io.livecode.ch/learn/namin/unsound

2016] and undecidable [Grigore, 2017] in the general case. It is possible to construct a Java

program in which the answer is “yes” regardless of Y, or for which an answer cannot always

be determined in finite time. Undecidability is not necessarily a showstopper, but Java’s

unsoundness is more critical and unclear how to fix, even though it rarely occurs in practice.

Kotlin is a statically-typed language that is well-suited for building cross-platform ap-

plications, with compiler support for JVM, JavaScript and native targets. Unlike most pro-

gramming languages, Kotlin was designed with IDE support from the outset, and has gained

some traction in the JVM ecosystem due to its ergonomics. Kotlin’s type system [Tate,

2013] is strictly less expressive, but fully interoperable with Java’s. It is unknown whether

the same issues which affect Java’s type system are present in Kotlin’s, but interoperability

with Java has broadened its adoption and remains a key usability feature of the language.

In this work, we make use of several language features unique to Kotlin, such as first-class

functions (§ 3.12), extension functions (§ 3.16), operator overloading (§ 3.11), and algebraic

data types (§ 3.14). Furthermore, we make heavy use of Kotlin’s DSL support to implement

shape-safe array programming. Together, these language features provide a concise, flexible

and type-safe platform for mathematical programming.

3.6. Kotlin∇

Prior work has demonstrated the possibility of encoding a deterministic context free

(DCF) language in the Java type system as a fluent interface [Gil and Levy, 2016, Nakamaru

et al., 2017]. This result was strengthened to prove Java’s type system is Turing complete

(TC) [Grigore, 2017], which enables us to perform shape checking and inference on array

programs written in Java. Kotlin is a Java descendant which is at least DCF at the type

level. Kotlin∇, an embedded DSL in the Kotlin language is TC at the value level and DCF

at the type level. A similar approach is feasible in most languages with generic types.

Differentiable programming has a rich history among dynamic languages like Python, Lua

and JavaScript, with early implementations including projects like Theano [Bergstra et al.,

2010], Torch [Collobert et al., 2002], and TensorFlow [Abadi et al., 2016]. Similar ideas

have been implemented in functional languages such as Scheme (Stalin∇ [Pearlmutter and

Siskind, 2008b]), and statically-typed languages like F# (DiffSharp [Baydin et al., 2015b])

37

https://kotlinlang.org/docs/reference/generics.html#variance
https://kotlinlang.org/docs/reference/type-safe-builders.html
http://deeplearning.net/software/theano/
http://torch.ch/
https://tensorflow.org/
https://github.com/Functional-AutoDiff/STALINGRAD
https://diffsharp.github.io/DiffSharp/

Fig. 3.3. Adapted from van Merriënboer et al. [2018]. Kotlin∇ models are data structures,

constructed by an embedded DSL, eagerly optimized, and lazily evaluated.

and Swift [Lattner and Wei, 2018]. However, the majority of existing automatic differentia-

tion (AD) libraries use a loosely-typed DSL, and few offer shape-safe tensor operations in a

widely-used programming language.

Existing AD implementations for the JVM include Lantern [Wang et al., 2018b], Nexus [Chen,

2017] and DeepLearning.scala [Bo, 2018], however these are Scala-based and do not interop-

erate with other JVM languages. Kotlin∇ is fully interoperable with vanilla Java, enabling

broader adoption in neighboring languages. To our knowledge, Kotlin has no prior AD im-

plementation. However, the language has several useful features for implementing a native

AD framework. Kotlin∇ primarily relies on the following language features:

• Operator overloading and infix functions allow a concise notation for defining

arithmetic operations on tensor-algebraic structures, i.e. groups, rings and fields.

• λ-functions support functional programming, following Pearlmutter and Siskind

[2008a,b], Siskind and Pearlmutter [2008], Elliott [2009, 2018], et al.

• Extension functions support extending classes with new fields and methods which

can be exposed to external callers without requiring sub-classing or inheritance.

Kotlin∇ models are embedded domain-specific languages (eDSLs). These languages

may appear and behave unlike the host language, but are really just carefully disguised

functions for building an abstract syntax tree (AST). Often these ASTs represent simple

38

https://www.tensorflow.org/swift
https://feiwang3311.github.io/Lantern/
https://tongfei.me/nexus/
https://github.com/ThoughtWorksInc/DeepLearning.scala

state machines, but are also used to embed a programming language. Popular examples

include SQL/LINQ [Meijer et al., 2006], OptiML [Sujeeth et al., 2011] and other fluent in-

terfaces [Fowler, 2005]. In a sufficiently expressive host language, one can implement any

language as a library, without the need to write a lexer, parser, compiler or interpreter. And

with proper typing, users will receive code completion and static analysis from their favorite

developer tools. Functional languages are often suitable host languages [Elliott et al., 2003,

Rompf and Odersky, 2010], perhaps owing to the notion of code as data.

3.7. Usage

Kotlin∇ allows users to implement differentiable programs by composing expressions.

Consider the following Kotlin∇ program with two inputs and one output:

with(DoublePrecision) { // Uses double precision numerics for evaluation

val x by Var() // Declare immutable variables (these variables are

val y by Var() // just symbolic constructs used for differentiation)

val z = sin(10 * (x * x + pow(y, 2))) / 10 // Lazily evaluated

val dz_dx = d(z) / d(x) // Supports Leibniz notation [Christianson, 2012]

val d2z_dxdy = d(dz_dx) / d(y) // Mixing higher order partials

val d3z_d2xdy = grad(d2z_dxdy)[x] // Equivalent to d(d2z_dxdy)/d(x)

plot3D(d3z_d2xdy, -1.0, 1.0) // Plot in 3-space (-1 < x, y, z < 1)

}

39

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/linq/
http://stanford-ppl.github.io/Delite/optiml/

val t = (1 + x * 2 + z / y).d(y).d(x) + z / y * 3 - 4 * (y pow y).d(y)

+

+

d

d

+

+1.0

*x

2.0

*

z

* *

pow

y

pow

pow d * -

-

One

-

y

x
3.0

4.0y

Fig. 3.4. Implicit DFG constructed by the original expression, shown above.

Above, we define a function with two variables and take a series of partial derivatives

with respect to each variable. Expressions are lazily evaluated inside a numerical context,

which may be imported on a per-file basis or lexically scoped for finer-grained control over

the runtime behavior. The function is numerically evaluated on the interval (−1, 1) in each

dimension and rendered in 3-space. For a complete grammar, please refer to § A.1.

3.8. Type systems

Early work in type-safe dimension analysis can be found in Kennedy [1994, 1996] which

uses types to encode dimensionality and prevent common bugs related to dimension mismatch

from arising, and was later realized in the F# language [Kennedy, 2010]. Jay and Sekanina

[1997], Rittri [1995], and Zenger [1997] explore the application of dimension types for linear

algebra. More recently, Kiselyov [2005], Kiselyov et al. [2009] and Griffioen [2015], show

how to manipulate arrays in more complex ways. With the resurgence of interest in tensor

algebra and array programming, Chen [2017] and Rink [2018] demonstrate how to encode

shape-safety for tensor algebra in various type systems.

40

The problem we attempt to solve can be summarized as follows. Given two values x and

y, and operator $, how do we determine whether the expression z = x $ y is valid, and if

so, what is the result type of z? For matrix multiplication, when x ∈ Rm×n and y ∈ Rn×p,

the expression is well-typed and we can infer z ∈ Rm×p. More generally, we would like to

infer the type of z for some operator @ : (Ra,Rb) → Rc where a ∈ Nq,b ∈ Nr, c ∈ Ns and

q, r, s ∈ N. For many linear algebra operations such as matrix multiplication, S(a,b) ?
= c is

computable in O(1) – we can simply check the inner dimensions for equivalence (a2
?
= b1).

Shape checking multidimensional array operators is not always decidable. For arbitrary

shape functions S(a,b), checking S(a,b) ?
= c requires a Turing machine. If S uses the mul-

tiplication operator, as in the case of convolutional arithmetic [Dumoulin and Visin, 2016],

shape inference becomes equivalent to Peano arithmetic, which is undecidable [Gödel, 1931].

Addition, subtraction, indexing and comparison of integers are all decidable in Presburger

arithmetic [Suzuki and Jefferson, 1980, Bradley et al., 2006, Charlier et al., 2011]. Equality

checking is trivially decidable, and can be implemented in most static type systems.

Evaluating an arbitrary S which uses multiplication or division (e.g. convolutional arith-

metic) requires a dependently typed language [Xi and Pfenning, 1998, Piñeyro et al., 2019],

but checking shape equality (e.g. shape checking ordinary arithmetic operations) is feasible

in Java and its cousins.3 Furthermore, we believe that shape checking ordinary matrix arith-

metic is decidable in any type system loosely based on System F<: [Cardelli et al., 1994]. We

propose a type system for enforcing shape-safety which can be implemented in any language

with subtyping and generics, such as Java [Naftalin and Wadler, 2007], Kotlin [Tate, 2013],

TypeScript [Bierman et al., 2014] or Rust [Crozet et al., 2019].

3.9. Shape safety

There are three broad strategies for handling shape errors in array programming:

(1) Conceal the error by implicitly reshaping or broadcasting arrays.

(2) Announce the error at runtime with a relevant message, e.g. InvalidArgumentError.

(3) Do not allow programs which can result in a shape error to compile.

3Java’s type system is known to be Turing complete [Grigore, 2017]. Thus, emulation of dependent types

in Java is theoretically possible, but likely intractable due to the practical limitations noted by Grigore.

41

https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://kotlinlang.org/docs/reference/generics.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://doc.rust-lang.org/1.7.0/book/generics.html
https://docs.scipy.org/doc/numpy-1.15.0/user/basics.broadcasting.html
https://www.tensorflow.org/api_docs/python/tf/errors/InvalidArgumentError

Math Infix Prefix Postfix Operator Type Signature

A(B) a(b) (a : Rτ → Rπ ,b : Rλ → Rτ) → (Rλ → Rπ)

A±B
a + b

a - b

plus(a, b)

minus(a, b)
(a : Rτ → Rπ ,b : Rλ → Rπ) → (R? → Rπ)

AB
a * b

a.times(b)
times(a, b) (a : Rτ → Rm×n,b : Rλ → Rn×p) → (R? → Rm×p)

A
B

AB−1

a / b

a.div(b)
div(a, b) (a : Rτ → Rm×n,b : Rλ → Rp×n) → (R? → Rm×p)

±A
-a

+a

a.unaryMinus()

a.unaryPlus()
(a : Rτ → Rπ) → (Rτ → Rπ)

ln(A)
ln(a)

log(a)

a.ln()

a.log()
(a : Rτ → Rm×m) → (Rτ → Rm×m)

logb A a.log(b) log(a, b) (a : Rτ → Rm×m,b : Rλ → Rm×m) → (R? → R)

Ab a.pow(b) pow(a, b) (a : Rτ → Rm×m,b : Rλ → R) → (R? → Rm×m)
√
a

3
√
a

a.pow(1.0/2)

a.root(3)

a.pow(1.0/2)

a.root(3)

a.sqrt()

a.cbrt()
(a : Rτ → Rm×m) → (R → Rm×m)

da
db

a′(b)
a.d(b) grad(a)[b] d(a) / d(b) (a : Rτ → Rπ ,b : Rλ → Rω) → (R? → Rπ×ω)

Table 3.1. Kotlin∇’s shape system specifies the output shape for tensor expressions.

Shape R? → R R? → Rm R? → Rj×k

R? → R R? → R R? → Rm R? → Rj×k

R? → Rn R? → Rn R? → Rm×n

R? → Rh×i R? → Rh×i

Table 3.2. The shape of a tensor derivative depends on the shape of the function under

differentiation and the shape of the variable with respect to which we are differentiating.

Most array programming libraries such as NumPy [Van Der Walt et al., 2011] or Tensor-

Flow [Abadi et al., 2016] use the first or second strategy. In Kotlin∇, we adopt the third,

which allows an incremental type checker, such as those typically found in modern IDEs, to

instantaneously detect when a matrix operation is invalid. Consider the following example:

val vecA = Vec(1.0, 2.0) // Inferred type: Vec<Int, D2>

val vecB = Vec(1.0, 2.0, 3.0) // Inferred type: Vec<Int, D3>

val vecC = vecB + vecB

val vecD =
:::
vecA

::
+
:::::
vecB // Compile error: Expected Vec<2>, found Vec<3>

Attempting to sum two vectors whose shapes do not match will fail to compile.

42

val matA = Mat1x4(1.0, 2.0, 3.0, 4.0) // Inferred type: Mat<Double, D1, D4>

val matB = Mat4x1(1.0, 2.0, 3.0, 4.0) // Inferred type: Mat<Double, D4, D1>

val matC = matA * matB

val matD =
:::
matA

::
*
:::::
matC // Compile error: Expected Mat<4, *>, found Mat<1, 1>

Similarly, multiplying two matrices whose inner dimensions do not match will not compile.

val matA = Mat2x4(1.0, 2.0, 3.0, 4.0,

5.0, 6.0, 7.0, 8.0)

val matB = Mat4x2(1.0, 2.0,

3.0, 4.0,

5.0, 6.0,

7.0, 8.0)

val matC: Mat<Double, D2, D2> = a * b // Types are optional, but encouraged

val matD = Mat2x1(1.0, 2.0)

val matE = matC * matD

val matF = Mat3x1(1.0, 2.0, 3.0)

val matG =
:::
matE

::
*
:::::
matF // Compile error: Expected Mat<1, *>, found Mat<3, 1>

It is required to specify the parameter types in a method signature. Explicit return types are

optional but encouraged for readability. If omitted, the type system can often infer them:

fun someMatFun(m: Mat<Double, D3, D1>): Mat<Double, D3, D3> = ...

fun someMatFun(m: Mat<Double, D2, D2>) = ...

Shape safety is currently supported up to rank-2 tensors, i.e. matrices. To perform dimension

checking in our type system, first we enumerate a list of integer type literals as a chain of

subtypes, C <: C−1 <: C−2 <: · · · <: 1 <: 0, where C is the largest fixed-length dimension

we wish to represent, which can be specified by the user prior to compilation. This guarantees

linear space and time complexity for subtype checking, with a constant upper bound.

interface Nat<T: D0> { val i: Int }

// Integer literals have reified Int values should we need to compare them at runtime

sealed class D0(open val i: Int = 0) { companion object: D0(), Nat<D0> }

sealed class D1(override val i: Int = 1): D0(i) { companion object: D1(), Nat<D1> }

sealed class D2(override val i: Int = 2): D1(i) { companion object: D2(), Nat<D2> }

sealed class D3(override val i: Int = 3): D2(i) { companion object: D3(), Nat<D3> } //...

sealed class D99(override val i: Int = 99): D98(i) { companion object: D99(), Nat<D99> }

43

Next, we overload the call operator to emulate instantiating a collection literal, using arity

to infer its dimensionality. Consider the rank-1 case for length inference on vector literals:

open class Vec<E, Len: D1> constructor(val contents: List<E>) {

companion object {

operator fun <T> invoke(t: T): Vec<T, D1> = Vec(listOf(t))

operator fun <T> invoke(t0: T, t1: T): Vec<T, D2> = Vec(listOf(t0, t1))

operator fun <T> invoke(t0: T, t1: T, t2: T): Vec<T, D3> = Vec(listOf(t0, t1, t2))

}

}

Finally, we overload arithmetical operators using generic shape constraints. Since our type-

level integers are a chain of subtypes, we only need to define one operator and can rely on

Liskov substitution [Liskov, 1987] to preserve shape safety for all subtypes.

// <C: D1> will accept 1 <= C <= 99 via Liskov substitution

operator fun <E, C: D1, V: Vec<X, C>> V.plus(v: V): V = TODO()

The operator + can now be used like so. Incompatible operands will cause a type error:

// Type-checked vector addition with shape inference

val Y = Vec(0, 0) + Vec(0, 0) // Y: Vec<Float, D2>

val X =
:::::
Vec(0,

:::
0)

::
+
:::::::
Vec(0,

:::
0,

:::
0) // Compile error: Expected Vec<Int, D2>, found Vec<Int, D3>

Dynamic length construction is also permitted, although it may fail at runtime. For example:

val one = Vec(0, 0, 0) + Vec(0, 0, 0) // Always runs safely

val add = Vec(0, 0, 0) + Vec<Int, D3>(listOf(...)) // Compiles, but may fail at runtime

val vec = Vec(0, 0, 0) // Inferred type: Vec<3>

val sum =
:::::
Vec(0,

:::
0)

::
+
::::
add // Compile error: Expected Vec<Int, D2>, found Vec<Int, D3>

Matrices and tensors have a similar syntax. For example, Kotlin∇ can infer the shape of

matrix multiplication, and will not compile if the arguments’ inner dimensions disagree:

"

open class Mat<X, R: D1, C: D1>(vararg val rows: Vec<X, C>)

fun <X> Mat1x2(d0: X, d1: X): Mat<X, D1, D2> = Mat(Vec(d0, d1))

fun <X> Mat2x1(d0: X, d1: X): Mat<X, D2, D1> = Mat(Vec(d0), Vec(d1))

operator fun <X, Q: D1, R: D1, S: D1> Mat<X, Q, R>.times(m: Mat<X, R, S>): Mat<X, Q, S> =

44

" Mt(*(rows.indices).map { i -> /* ... */ }.toTypedArray())

val matM = Mat1x2(0, 0)

val matO =
:::
matM

::
*
:::::
matM // Compile error: Expected Mat<2, *>, found Mat<1, 2>

A similar technique can be found in nalgebra [Crozet et al., 2019], a shape-checked linear

algebra library for the Rust language which also uses synthetic type-level integers. This

technique originates in Haskell, a language which supports more powerful forms of type-

level computation, such as type arithmetic [Kiselyov, 2005]. Type arithmetic simplifies array

concatenation, convolutional arithmetic [Dumoulin and Visin, 2016] and other operations

which are currently difficult to express in Kotlin∇, where arbitrary type-level functions

S(a,b) (ref. § 3.8) can require enumerating up to Cq+r Kotlin functions to compute.

3.10. Testing

Kotlin∇ claims to eliminate certain runtime errors, but how do we know the implemen-

tation is not incorrect? One method is known as property-based testing (PBT) [Fink and

Bishop, 1997] (§ 4.1.4), closely related to the notion of metamorphic testing [Chen et al.,

1998] (§ 4.1.5). Notable implementations include QuickCheck [Claessen and Hughes, 2000],

Hypothesis [MacIver, 2018] and KotlinTest [Samuel and Lopes, 2018], on which our test suite

is based. PBT uses algebraic properties to verify the result of a calculation by constructing

semantically equivalent but syntactically distinct expressions. When evaluated on the same

inputs, these should produce the same answer, to within numerical precision. Two such

equivalences are used to test Kotlin∇:

(1) Analytical differentiation: manually differentiate selected functions and compare

the numerical result of evaluating random chosen inputs from their domain with the

numerical result obtained by evaluating AD on the same inputs.

(2) Finite difference approximation: sample the space of symbolic differentiable

functions, comparing the numerical results suggested by the finite difference method

and the equivalent AD result, up to a fixed-precision approximation.

45

http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html
https://hypothesis.readthedocs.io/en/latest/
https://github.com/kotlintest/kotlintest

For example, the following test checks whether the analytical derivative and the automatic

derivative, when evaluated at random points, are equal to within numerical precision:

val z = y * (sin(x * y) - x) // Function under test

val dz_dx = d(z) / d(x) // Automatic derivative

val manualDx = y * (cos(x * y) * y - 1) // Manual derivative

"dz/dx should be y * (cos(x * y) * y - 1)" {

NumericalGenerator.assertAll { x0, y0 ->

// Evaluate the results at a given seed

val autoEval = dz_dx(x to x0, y to y0)

val manualEval = manualDx(x to x0, y to y0)

autoEval shouldBeApproximately manualEval // Fails iff eps < |adEval - manualEval|

}

}

PBT will search the input space for two numerical values x0 and y0, which violate the

specification, then “shrink” them to discover pass-fail boundary values. We can construct a

similar test using the finite difference method, e.g. f ′(x) = limh→0
f(x+h)−f(x)

h
:

val dx = 1E-8

val f = sin(x)

val df_dx = d(f) / d(x)

val fd_dx = (sin(x + dx) - sin(x)) / dx

"d(sin x)/dx should be equal to (sin(x + dx) - sin(x)) / dx" {

NumericalGenerator.assertAll { x0 ->

val autoEval = df_dx(x0)

val fdEval = fd_dx(x0)

autoEval shouldBeApproximately fdEval // Fails iff eps < |adEval - fdEval|

}

}

For further details about PBT, see § 4.1.4. There are many other ways to independently

check the numerical gradient, such as dual numbers or the complex step derivative [Martins

et al., 2003]. Another strategy is to compare with a well-known AD framework, such as

TensorFlow [Abadi et al., 2016] or PyTorch [Paszke et al., 2019]. In future work, we intend

to conduct a more thorough comparison of numerical accuracy and performance.

46

3.11. Operator overloading

Operator overloading [Corliss and Griewank, 1993] is one of the simplest ways to implement

automatic differentiation. We use Kotlin’s operator overloading functionality on a numeric

tower (ref. § 3.13) to provide a concise notation for abstract algebraic operations. For

example, suppose we have an interface Group, which overloads the operators + and *:

interface Group<T: Group<T>> {

operator fun plus(addend: T): T

operator fun times(multiplicand: T): T

}

Here, we specify a recursive type bound using a method known as F-bounded polymor-

phism [Canning et al., 1989] to ensure that operations return the concrete value of the type

variable T, rather than something more abstract like Group (effectively, T is a self type).

Imagine a class Fun which has implemented Group. It can be used as follows:

fun <T: Group<T>> cubed(t: T): T = t * t * t

fun <T: Group<T>> twiceCubed(t: T): T = cubed(t) + cubed(t)

Like Python, Kotlin supports overloading a limited set of operators, which are evaluated

using a fixed precedence. In the current version of Kotlin∇, operators do not perform

any computation, they simply construct a directed acyclic graph (Fig. 3.4) representing the

symbolic expression. Expressions are only evaluated when invoked as a function.

3.12. First-class functions

By supporting higher-order functions and lambdas, Kotlin treats functions as first-class

citizens. This allows us to represent mathematical functions and programming functions

with the same underlying abstractions (i.e. typed FP). Following a number of recent papers

in functional AD [Pearlmutter and Siskind, 2008a, Wang et al., 2018a], all expressions in

Kotlin∇ are treated as functions. For example:

fun <T: Group<T>> makePoly(x: Var<T>, y: Var<T>) = x * y + y * y + x * x

val f = makePoly(x, y)

val z = f(1.0, 2.0) // Returns a value

47

https://kotlinlang.org/docs/reference/operator-overloading.html
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://kotlinlang.org/docs/reference/grammar.html#precedence

Currently, it is possible to represent functions where all inputs and outputs share a single data

type. It may be possible to extend support for building functions with varying input/output

types and enforcing constraints on both, by using covariant and contravariant type bounds.

3.13. Numeric tower

Kotlin∇ uses a numeric tower [St-Amour et al., 2012]. An early example of this pattern

can be found in Scheme [Sperber et al., 2009]. This strategy is also suited to object oriented

languages [Niculescu, 2003, 2011, Kennedy and Russo, 2005] and applied in libraries such as

KMath [Nozik, 2019] and Apache Commons Math [Developers, 2012].

interface Group<X: Group<X>> {

operator fun unaryMinus(): X

operator fun plus(addend: X): X

operator fun minus(subtrahend: X): X = this + -subtrahend

operator fun times(multiplicand: X): X

}

interface Field<X: Field<X>> : Group<X> {

val e: X

val one: X

val zero: X

operator fun div(divisor: X): X = this * divisor.pow(-one)

infix fun pow(exp: X): X

fun ln(): X

}

The numeric tower allows us to define common behavior such as subtraction and division on

abstract algebraic structures, e.g. Group, Ring, and Field. These abstractions are extensible

to concrete number systems, such as complex numbers and quaternions. For example, to later

define a field over complex numbers or quaternions,4 one must simply extend the numeric

tower and override the default implementation. Most mathematical operations can be defined

using a small set of primitive operators, which can be differentiated in a generic fashion,

rather than on an ad hoc basis.

4ex. In order to calculate derivatives in a quaternion neural network. [Isokawa et al., 2003]

48

https://www.gnu.org/software/guile/manual/html_node/Numerical-Tower.html
https://github.com/mipt-npm/kmath
https://commons.apache.org/proper/commons-math/

3.14. Algebraic data types

Algebraic data types (ADTs) in the form of sealed classes (a.k.a. sum types) facilitate a

limited form of pattern matching over a closed set of subclasses. When matching against

subclasses of a sealed class, the compiler forces the author to provide an exhaustive control

flow over all concrete subtypes of an abstract class. Consider the following classes:

class Const<T: Fun<T>>(val number: Number) : Fun<T>()

class Sum<T: Fun<T>>(val left: Fun<T>, val right: Fun<T>) : Fun<T>()

class Prod<T: Fun<T>>(val left: Fun<T>, val right: Fun<T>) : Fun<T>()

class Var<T: Fun<T>> : Fun<T>() { override val variables: Set<Var<X>> = setOf(this) }

class Zero<T: Fun<T>> : Const<T>(0.0)

class One<T: Fun<T>> : Const<T>(1.0)

When branching on the type of a sealed class, consumers must explicitly handle every case,

since incomplete control flow will not compile rather than fail silently at runtime. Let us

now consider a simplified definition of Fun, a sealed class which defines the behavior of

function invocation and differentiation, using a restricted form of pattern matching. It can

be constructed with a set of Vars, and can be invoked with a numerical value:

"

sealed class Fun<X: Fun<X>>(open val variables: Set<Var<X>> = emptySet()) : Group<Fun<X>> {

constructor(vararg fns: Fun<X>): this(fns.flatMap { it.variables }.toSet())

// Since the subclasses of Fun are a closed set, no � else -> ... � is required.

operator fun invoke(map: Map<Var<X>, X>): Fun<X> = when (this) {

is Const -> this

is Var -> map.getOrElse(this) { this } // Partial application is permitted

is Prod -> left(map) * right(map) // Smart casting implicitly casts after checking

is Sum -> left(map) + right(map)

}

fun d(variable: Var<X>): Fun<X> = when(this) {

is Const -> Zero

is Var -> if (variable == this) One else Zero

// Product rule: d(u*v)/dx = du/dx * v + u * dv/dx

is Prod -> left.d(variable) * right + left * right.d(variable)

is Sum -> left.d(variable) + right.d(variable)

}

operator fun plus(addend: Fun<T>) = Sum(this, addend)

49

https://kotlinlang.org/docs/reference/sealed-classes.html

" operator fun times(multiplicand: Fun<T>) = Prod(this, multiplicand)

}

Kotlin’s smart casting is an example of flow-sensitive type analysis [Pearce and Noble, 2011]

where the abstract type Fun can be treated as Sum after performing an is Sum check. Without

smart casting, we would need to write (this as Sum).left to access the member, left,

creating a potential ClassCastException if the cast were mistaken.

3.15. Multiple dispatch

In conjunction with ADTs, Kotlin∇ uses multiple dispatch to instantiate the most specific

result type of an arithmetic operation based on the type of its operands. Although Kotlin

does not directly support multiple dispatch, it can be emulated using single dispatch as

described by Leavens and Millstein [1998]. Building on § 3.14, suppose we wish to rewrite

some algebraic expression, e.g. to reduce expression swell or improve numerical stability. We

can use when to branch on the type of a subexpression at runtime:

override fun times(multiplicand: Fun<X>): Fun<X> =

when {

this == zero -> this

this == one -> multiplicand

multiplicand == one -> this

multiplicand == zero -> multiplicand

this == multiplicand -> pow(two)

// w/o smart cast: Const((this as Const).number * (multiplicand as Const).number)

this is Const && multiplicand is Const -> Const(number * multiplicand.number)

// Further simplification is possible using rules of replacement

else -> Prod(this, multiplicand)

}

val result = Const(2.0) * Sum(Var(2.0), Const(3.0))

// = Sum(Prod(Const(2.0), Var(2.0)), Const(6.0))

Multiple dispatch allows us to put all related control flow on a single abstract class which is

inherited by subclasses, simplifying readability, debugging and refactoring.

50

https://kotlinlang.org/docs/reference/typecasts.html#smart-casts

3.16. Extension functions

Extension functions augment external classes with new fields and methods. By using

context-oriented programming [Hirschfeld et al., 2008], we can expose custom extensions

(e.g. through DoubleContext) to consumers without requiring subclassing or inheritance.

object DoubleContext {

operator fun Number.times(expr: Fun<Double>) = Const(toDouble()) * expr

}

Now, we can use the context to define another extension, Fun.multiplyByTwo(), which

computes the product inside a DoubleContext, using the operator overload defined above:

fun Fun<Double>.multiplyByTwo() = with(DoubleContext) { 2 * this }

Extensions can also be defined in another file or context and imported on demand, an

approach borrowed from KMath [Nozik, 2019], another mathematical library for Kotlin.

This approach is also suitable for defining convenience methods for variable assignment and

type adapters for numerical primitives in a context sensitive manner. For example:

object DoubleContext: Proto<DConst, Double>() {

override val Const<DConst, Number>.value: Double

get() = c.toDouble()

override fun wrap(default: Number): DConst = DConst(default.toDouble())

override val X: X<DConst> = object: X<DConst>(DConst(0.0)) {

override fun invoke(X: XBnd<DConst>): DConst = X.const

override fun toString() = "X"

}

override val Y: Y<DConst> = object: Y<DConst>(DConst(0.0)) {

override fun invoke(Y: YBnd<DConst>): DConst = Y.const

override fun toString() = "Y"

}

override infix fun X<DConst>.to(c: Double) = XBnd(DConst(c))

override infix fun Y<DConst>.to(c: Double) = YBnd(DConst(c))

}

This DSL, which is used to support variable capture and currying, can be used as follows:

51

https://kotlinlang.org/docs/reference/extensions.html
https://github.com/mipt-npm/kmath

with(DoubleContext) {

val t = X + Y + 0.0

val l = t(X to 1.0, Y to 2.0) * t(X to 1.0)(Y to 3.0) // Currying

val p = t(X to 1.0) // Partial application

val k =
::
t(Z

:::
to

:::::
4.0) // Does not compile

}

3.17. Automatic, symbolic differentiation

Taking inspiration from McCarthy [1960], Kotlin∇ implements symbolic differentiation,

similar to the approach found in Abelson and Sussman [1996, §2.56–2.58]. Symbolic expres-

sions allow for easier readability, numerical precision and computational efficiency. Motivated

by this observation, we implement vector and matrix extensions to scalar differentiation as

described by Dwyer et al. [1948] and more recently Laue et al. [2018].

It has long been claimed by the AD literature that automatic differentiation is not sym-

bolic differentiation [Baydin et al., 2015a]. Many, including the author of this thesis, have

suspected this claim to be misleading. Recently, the claim has been questioned [Wang et al.,

2018b] and refuted [Laue, 2019]. While it may be true that certain implementations of auto-

matic differentiation interleave numerical evaluation and symbolic differentiation at runtime,

this interleaving is certainly not a prerequisite for a differentiation library to be considered

automatic. Nor, as suggested by prior literature [Baydin and Pearlmutter, 2014], is the

problem of expression swell unique to symbolic differentiation [Laue, 2019].

The distinction between AD and SD becomes increasingly blurry when we consider more

flexible execution models [Wang et al., 2018b] and hybrid ADs [Abadi et al., 2016] which are

capable of both eager [Paszke et al., 2019, Agrawal et al., 2019] and lazy [Neubig et al., 2017,

van Merriënboer et al., 2018] evaluation. Instead, we take the view that symbolic differen-

tiation is a type of automatic differentiation which the AD literature has been too quick to

dismiss. SD in particular, affords the compiler far more flexibility to perform global opti-

mizations such as algebraic simplification [Bergstra et al., 2010], loop vectorization [Agarwal,

2019] and tensor comprehension [Vasilache et al., 2018, Laue et al., 2020]. These optimiza-

tions would otherwise be impossible if their symbolic differentiation and numerical evaluation

were performed in lockstep, when the dataflow graph is only partially available.

52

3.18. Coroutines

Coroutines are a generalization of subroutines for non-preemptive multitasking, typically

implemented using continuations [Haynes et al., 1984]. Continuations are a mechanism

that allow functions to access and modify subsequent computation. In continuation-passing

style [Sussman and Steele, 1975] (CPS), every function, in addition to its usual arguments,

takes another function representing the subsequent routine. Rather than returning to its

caller after completion, the function invokes its continuation, and the process is restarted.

One form of continuation, known as delimited continuations, are sufficient for imple-

menting reverse-mode AD with operator overloading alone (sans additional data structures)

as described by Wang et al. [2018b] and later in Wang et al. [2018a]. While callbacks in

Kotlin are single-shot by default, reentrant or “multi-shot” delimited continuations can also

be implemented using Kotlin Coroutines. Multi-shot delimited continuations would greatly

simplify our AD implementation, support a more flexible set of primitives for asynchronous

programming and merits further investigation.

3.19. Comparison

Inspired by Stalin∇ [Pearlmutter and Siskind, 2008b], Autograd [Maclaurin et al., 2015,

Maclaurin, 2016], Theano [Bergstra et al., 2010], Myia [Breuleux and van Merriënboer,

2017, van Merriënboernboer et al., 2018], JAutoDiff [Nureki, 2012], Nexus [Chen, 2017],

Lantern [Wang et al., 2018b], Tangent [van Merriënboer et al., 2018], Elliott [2018], Halide [Li

et al., 2018] et al., Kotlin∇ attempts to port recent developments in automatic differentiation

(AD) to the Kotlin language. In the process, it introduces a number of experimental ideas,

including compile-time shape-safety, algebraic simplification and numerical stability check-

ing through property-based testing. Prior work, including PyTorch [Paszke et al., 2019],

TensorFlow [Abadi et al., 2016], Chainer [Tokui et al., 2015], DL4J Team [2016a] and others

have developed general-purpose AD libraries in less safe languages.

Unlike most existing AD implementations, Kotlin∇ is a purely symbolic, graph-based AD

that does not require any template metaprogramming, compiler augmentation or runtime re-

flection. As we have seen, this approach is primarily achieved through operator overloading,

parametric polymorphism, and pattern matching. The practical advantage of this technique

is that it can be implemented as a simple library or embedded domain-specific language

53

https://gist.github.com/elizarov/ddee47f927dda500dc493e945128d661
https://kotlinlang.org/docs/reference/coroutines-overview.html
https://github.com/Functional-AutoDiff/STALINGRAD
https://github.com/HIPS/autograd/
http://deeplearning.net/software/theano/
https://github.com/mila-iqia/myia
https://github.com/uniker9/JAutoDiff/
https://tongfei.me/nexus/
https://feiwang3311.github.io/Lantern/
https://github.com/google/tangent
https://people.csail.mit.edu/tzumao/gradient_halide/
https://pytorch.org/
https://www.tensorflow.org/
https://chainer.org/
https://deeplearning4j.org/

Framework Language Sy
mbo

lic
Diff

ere
nt

iat
ion

Au
to

mat
ic

Diff
ere

nt
iat

ion

Diff
ere

nt
iab

le
Pr

og
ra

mming

Fu
nc

tio
na

l P
ro

gr
am

ming

Ty
pe

-S
afe

Sh
ap

e-S
afe

Dep
en

de
nt

ly-
Ty

pe
d

M
ult

ipl
at

for
m

Kotlin∇ Kotlin 3 3 3 3 3 3 7 -

DiffSharp F# 7 3 3 3 3 7 7 7

TensorFlow.FSharp F# 7 3 3 3 3 3 7 7

Nexus Scala 7 3 3 3 3 3 7 7

Lantern Scala 7 3 3 3 3 7 7 7

Tensor Safe Haskell 7 3 7 3 3 3 3 7

Hasktorch Haskell 7 3 3 3 3 3 7 7

Eclipse DL4J Java 7 3 7 7 3 7 7 7

JAutoDiff Java 3 3 3 7 3 7 7 7

Stalin∇ Scheme 7 3 3 7 7 7 7 7

Myia Python 3 3 3 3 7 7 7 -

JAX Python 7 3 3 3 7 7 7 -

Table 3.3. Comparison of AD libraries. Although we do not distinguish between AD and

SD as described in § 3.17, here we adopt the authors’ preferred nomenclature. We do make

a distinction between differentiable programming libraries (§ 3.2) and those which simply

construct neural networks. The -symbol indicates work in progress.

(eDSL), thereby leveraging the host language’s type system to receive code completion and

type inference for free. Our approach employs several functional idioms, including lambda

expressions, higher order functions, partial application, currying and algebraic data types.

For a detailed comparison of Kotlin∇ with existing AD libraries, refer to Table 3.3.

Kotlin∇ advocates for the use of type safe, functional array programming, but does

not impose its preferences on consumers. If the user omits shape, it falls back to runtime

shape checking. In keeping with the philosophy of the host language, users can employ

54

https://github.com/breandan/kotlingrad
https://diffsharp.github.io/DiffSharp/
https://github.com/fsprojects/fsharp-ai-tools
https://tongfei.me/nexus/
https://feiwang3311.github.io/Lantern/
https://github.com/leopiney/tensor-safe
https://github.com/hasktorch/hasktorch
https://deeplearning4j.org
https://uniker9.github.io/JAutoDiff/
https://github.com/Functional-AutoDiff/STALINGRAD
https://github.com/mila-iqia/myia
https://github.com/google/jax

their preferred programming style, gradually introducing constraints to enjoy the benefits of

stronger type checking and avail themselves of its richer functional programming features.

3.20. Future work “The derivative, as this notion appears in the elementary differ-

ential calculus, is a familiar mathematical example of a function

for which both [the domain and the range] consist of functions.”

–Alonzo Church [1941], The Calculi of Lambda Conversion

The derivative, as commonly used, is usually associated with the calculus of infinites-

imals. But the same rules for symbolic differentiation introduced by Leibniz and Newton

over three centuries ago have reappeared in strange and marvelous places. In Brzozowski

[1964], we encounter an example of symbolic differentiation in a discrete setting, i.e. regular

expressions. Brzozowski’s work has important and far-reaching applications in automata

theory [Berry and Sethi, 1986, Caron et al., 2011, Champarnaud et al., 1999] and incremen-

tal parsing [Might et al., 2011, Moss, 2017]. Later in Thayse [1981] the boolean differential

calculus was first introduced,5 a branch of boolean algebra which has important applications

in switching theory [Thayse and Davio, 1973] and synthesis of digital circuits [Steinbach

and Posthoff, 2017]. Symbolic differentiation has useful applications in other mathematical

settings, including λ-calculus [Ehrhard and Regnier, 2003, Cai et al., 2014, Kelly et al., 2016,

Brunel et al., 2020], incremental computation [Alvarez-Picallo et al., 2018, Alvarez-Picallo

and Ong, 2019], type theory [McBride, 2001, 2008, Chen et al., 2012], category theory [Blute

et al., 2006, 2009], domain theory [Edalat and Lieutier, 2002], probability theory [Kac, 1951]

and linear logic [Ehrhard, 2016, Clift and Murfet, 2018].

Many further examples of symbolic differentiation can be found in unrelated bodies of

literature. These clues seem to suggest an unrealized connection between differential and

algebraic geometry, perhaps holding important insights for differentiable programming and

the study of change propagation on computation graphs.

The work described in this chapter establishes a framework for exploring symbolic dif-

ferentiation using algebraic structures like Group, Ring, and Field (§ 3.13). In future work,

we hope to explore the relationship between differentiable programming and symbolic dif-

ferentiation in other topologies. Perhaps there exists an analogous mechanism to gradient

5Although early work on the subject can be traced back to Talantsev [1959] and Sellers et al. [1968]

55

https://archive.org/details/AnnalsOfMathematicalStudies6ChurchAlonzoTheCalculiOfLambdaConversionPrincetonUniversityPress1941

descent which can be exploited to accelerate optimization in such spaces, e.g. for learning

boolean variables and other data structures like graphs and trees.

As shown in prior literature [Bergstra et al., 2010, Baydin et al., 2015a, Laue, 2019],

intermediate expression swell is a pernicious issue in computer algebra and automatic dif-

ferentiation. The ad-hoc algebraic simplification procedure described in § 3.15 is almost

certainly inadequate for general use cases. One interesting direction would be training a

model to minimize numerical drift, by applying general-purpose rewriting rules. There ex-

ists a long list of prior work in rewriting algorithms for numerical stability, dating back to

Kahan [1965], Dekker [1971], Ogita et al. [2005] and more recently explored by Zaremba

et al. [2014], Zaremba [2016] and Wang et al. [2019] from a machine learning perspective.

Providing a type for matrix structure (e.g. Singular, Symmetric, Orthogonal) would

allow specializations of the matrix derivative (§2.8 of Petersen et al. [2012] for a detailed re-

view of specific techniques for differentiating structured matrices). In terms of enhancing the

type system, Makwana and Krishnaswami [2019] have developed a linearly-typed encoding

of linear algebra which would also be interesting to explore.

From a performance standpoint, migrating to a dedicated linear algebra backend such

as ND4J [Team, 2016b], Apache Commons Math [Developers, 2012], EJML [Abeles, 2010]

or JBlas [Braun et al., 2011] would likely yield some speedup. Ultimately, we plan to com-

pile to a dedicated intermediate representation such as RelayIR [Roesch et al., 2018] or

MLIR [Lattner et al., 2020] in order to receive hardware acceleration on other platforms.

3.21. Conclusion

In this chapter, we have demonstrated Kotlin∇, an embedded domain specific language

for differentiable programming and its implementation in the Kotlin programming language.

Using our DSL as a vehicle, we explored some interesting topics in automatic differentiation

and shape safe array programming. The author wishes to thank Hanneli Tavante, Alexan-

der Nozik, Erik Meijer, Maxime Chevalier-Boisvert, Kiran Gopinathan, Jacob Miller and

Adam Pocock for their valuable feedback during the development of this project. For more

information about Kotlin∇, please visit: https://github.com/breandan/kotlingrad.

56

https://deeplearning4j.org/docs/latest/nd4j-overview
https://commons.apache.org/proper/commons-math/
http://ejml.org
http://jblas.org/
https://docs.tvm.ai/dev/relay_intro.html
https://www.tensorflow.org/mlir
https://github.com/breandan/kotlingrad

Chapter 4

Testing intelligent systems

“If we use, to achieve our purposes, a mechanical agency with whose operation

we cannot efficiently interfere. . . then we had better be quite sure the purpose

put into the machine is the purpose which we really desire.”

–Norbert Wiener [1960], Some moral and technical consequences of automation

Today’s deep neural networks are capable of learning a broad range of functions, but have

specific weaknesses. Training neural networks which can robustly transfer to new domains

where the training and test distributions are highly dissimilar poses a significant challenge.

These models are often susceptible to failure when presented with carefully crafted inputs.

However, the same gradient-based optimization techniques used for training neural networks

can also be exploited to probe their failure modes.

In software engineering, techniques for software testing are becoming increasingly au-

tomated and general-purpose. Tests help prevent regressive behavior and are a form of

specification in which the developer communicates the intended result of running a program.

While critically important, tests are often cumbersome to implement. Recent techniques in

automated testing have enabled developers to write fewer tests with higher coverage.

In this chapter we propose a novel property-based testing (PBT) algorithm for differ-

entiable programs, and show our method empirically improves sample efficiency over naïve

probabilistic testing, as measured by its ability to detect a greater proportion of errors vio-

lating test constraints in a given budget. Our algorithm can be used to both identify trust

region boundaries, and attack a pretrained model given input-output access and a few sam-

ples from the training distribution. We further explore the relationship between adversarial

methods in machine learning and PBT, and show how adversarial learning can be seen as

an extension to a PBT technique known as metamorphic testing (MT).

https://www.ias.ac.in/article/fulltext/reso/004/01/0080-0088

4.1. Background

In the following sections, we introduce a series of software testing methodologies, in

decreasing order of cognitive complexity. We hypothesize the subsequent methods allow

developers to attain the same level of assurance with progressively lower effort.

4.1.1. Unit testing

In traditional unit testing, each subroutine is accompanied by a single test:

fun unitTest(subroutine: (Input) -> Output) {

val input = Input() // Construct an input

val expectedOutput = Output() // Construct an output

val actualOutput = subroutine(input)

assert(expectedOutput == actualOutput) { "Expected $expectedOutput, got $actualOutput" }

}

Unit testing is an effective to validate one’s belief about pre- and post-conditions. The

trouble is, someone needs to write a bunch of test cases. Side effects include reduced agility,

aversion to refactoring or discarding prior work when tests become obsolete.

4.1.2. Integration testing

In integration testing, we are more concerned about the overall behavior of a program, rather

than the specific behavior of its subroutines. Consider the following example:

fun <I, O> integrationTest(program: (I) -> O, inputs: Set<I>, checkOutput: (O) -> Boolean) =

inputs.forEach { input: I ->

try {

val output: O = program(input)

assert(checkOutput(output)) { "Postcondition failed on $input, $output" }

} catch (exception: Exception) {

assert(false) { exception }

}

}

With this strategy, there are fewer tests to write down, since we only care about end-to-end

behavior. Integration testing simply checks a program for terminating exceptions and simple

post conditions. For this reason, it is often too coarse-grained.

58

4.1.3. Fuzz testing

Fuzz testing is an automated testing methodology which generates random inputs to test

a given program. For example, consider the following test:

fun <I, O> fuzzTest(program: (I) -> O, oracle: (I) -> O, rand: () -> I) =

repeat(1000) {

val input: I = rand()

assert(program(input) == oracle(input)) { "Oracle and program disagree on $input" }

}

The trouble is, we need an oracle, an often unreasonable assumption. This is known as the

test oracle problem. But even if we had an oracle, since the space of inputs is often large, it

can take a long time to find an output where they disagree. Since a single call to program(i)

can be quite expensive in practice, this method can also be quite inefficient.

4.1.4. Property-based testing

Property-based testing [Fink and Bishop, 1997] (PBT) attempts to mitigate the test

oracle problem by using properties. It consists of two phases, searching and shrinking. Users

specify a property over all outputs and the test fails if a counterexample can be found:

fun <I, O> gen(program: (I) -> O, property: (O) -> Boolean, rand: () -> I) =

repeat(1000) {

val randomInput: I = rand()

assert(property(program(randomInput))) {

val shrunken = shrink(randomInput, program, property)

"Minimal input counterexample of property: $shrunken"

}

}

Roughly speaking, shrink attempts to minimize the counterexample.

tailrec fun <I, O> shrink(failure: I, program: (I) -> O, property: (O) -> Boolean): I =

if (property(program(decrease(failure)))) failure // Property holds once again

else shrink(decrease(failure), program, property) // Decrease until property holds

For example, given a program: (Float) -> Any, we might implement decrease like so:

59

−1,200−1,000−800 −600 −400 −200 0 200 400 600 800 1,000 1,200

−15

−10

−5

0

5

x

lo
g 1

0
(∆

)
Log errors between AD and SD on f(x) = sin(sin(sin(x))))

x
+ x sin(x) + cos(x) + x

∆(SD, AP) ≈ ∆(AD, IP)
∆(AD, SD)
∆(FD, AP)

Fig. 4.1. We compare numerical drift between AD and SD over a swollen expression using

fixed precision and arbitrary precision (AP). AD and SD both exhibit relative errors (i.e.

with respect to each other) several orders of magnitude lower than their absolute error. These

results are consistent with the findings of Laue [2019].

fun decrease(failure: Float): Float = failure - failure / 2

Consider Fig. 4.3, which portrays the log difference between various forms of computational

differentiation (evaluated using standard 32-bit precision) and AP (computed to 30 signif-

icant figures).1 Given two algorithms for calculating the derivative, a property-based test

might check whether the error is bounded over all inputs.

The trouble is, what are the right properties to test? This requiring a lot of effort and

domain-specific expertise. In addition, the user must specify a custom shrinker, which is

unclear how to implement efficiently. What if there were a better way?

1To calculate AP, we symbolically derive the function and numerically evaluate it using finite difference

approximation and the MacLaurin series expansion of sine and cosine to arbitrary numerical precision.

60

4.1.5. Metamorphic testing

It is often the case we would like to test the behavior of a program without completely

specifying its properties. Many naturally-occurring generative processes exhibit a kind of

local invariance – small changes to the input do not drastically change the output. We

can exploit this property to design general-purpose fuzzing methods given just a few inputs

and outputs. Metamorphic testing (MT) is an approach to property-based testing which

addresses the test oracle problem and the challenge of cheaply discovering bugs in the low-

data regime. It has been successfully applied in testing driverless cars [Zhou and Sun, 2019,

Pei et al., 2017, Tian et al., 2018] and other stateful deep learning systems [Du et al., 2018].

First, let us consider the following concrete example, borrowed from Tian et al. [2018]:

suppose we have implemented a program which takes an image from a vehicle while driving,

and predicts the simultaneous steering angle of the vehicle. Given a single image and the

corresponding ground-truth steering angle from an oracle (e.g. a human driver or simulator),

our program should preserve invariance under various image transformations, such as limited

illumination changes, linear transformations or additive noise below a certain threshold.

Intuitively, the steering angle should remain approximately constant, regardless of any single

transformation or sequence of transformations applied to the original image which satisfy our

chosen criteria. If not, this is a strong indication our program is not sufficiently robust and

may not respond well to the sort of variability it may encounter in an operational setting.

Metamorphic testing can be expressed as follows: Given an oracle P : I → O, and a

set of inputs X = {x(1), . . . ,x(z)} and outputs Y = {y(1) = P(x(1)), . . . ,y(z) = P(x(z))}, a

metamorphic relation (MR) is a relation R ⊂ Iz ×Oz where z ≥ 2. In the simplest case, an

MR is an equivalence relation R, i.e.: ⟨x,y,x′,y′⟩ ∈ R ⇔ x ∼R x′ ⇔ P(x) ≈ P(x′).

Suppose our MR is ∀φ ∈ I : ||φ|| ≤ ε,P(x) ≈ P(x′ = x + φ) ≈ y. Given a program

P̂ and a comparatively small set of inputs X and outputs Y from our oracle P, the MR

produces a set X′, |X| ≪ |X′| on which to test P̂, without requiring corresponding outputs

from P. If we can show ∃x′ ∈ X′ | P̂(x′) ̸≈ P(x), this implies at least one of the following:

(1) ⟨x,P(x),x′,P(x′)⟩ /∈ R, i.e. our assumptions were invalid

(2) P̂(x′) ̸≈ P(x′), i.e. the program under test is unsound

61

In either case, we have obtained useful information. If our assumptions were invalid, we can

strengthen the invariant, R, by removing the counterexample. Otherwise, we have detected

an error and can adjust the program to ensure compliance – both are useful outcomes.

Consider the following example of an MT which uses an equivalence-based MR:

fun <I, O> mrTest(program: (I) -> O, mr: (I, O, I, O) -> Boolean, rand: () -> Pair<I, O>) =

repeat(1000) {

val (input: I, output: O) = rand()

val tx: (I) -> I = genTX(program, mr, input, output)

val txInput: I = tx(input)

val txOutput: O = program(txInput)

assert(mr(input, output, txInput, txOutput)) {

"<$input, $output> not related to <$txInput, $txOutput> by $mr ($tx)"

}

}

The trouble is, generating valid transformations is a non-trivial exercise. We could try to

generate random transformations until we find one which meets our criteria:

fun <I, O> genTX(program: (I) -> O, mr: (I, O, I, O) -> Boolean, i: I, o: O): (I) -> I {

while (true) {

val tx: (I) -> I = sampleRandomTX()

val txInput: I = tx(i)

val txOutput: O = program(txInput)

if (mr(i, o, txInput, txOutput)) return tx

}

}

But this would be very inefficient and depending on the type of input and output, is not

guaranteed to terminate. We could handcraft a transformation, but this requires extensive

domain knowledge. Instead, we should seek a more principled, computationally efficient and

general purpose method of mutating an input in our dataset to discover invalid outputs.

4.1.6. Adversarial testing

This leads us to adversarial testing. In the general case, we are given an input-output

pair from an oracle and a program approximating the oracle, but not necessarily the oracle

62

itself. Our goal is to find a small change to the input of a function, which produces the

largest change to its output, relative to the original output.

Imagine a function P̂ : Rm → R, each component g1, ..., gm of which we seek to change

by a fixed amount so as to produce the largest output value P̂(g′1, ..., g
′
m) directly. Suppose

for each input parameter g1, . . . , gm, we have one of three choices to make: either we can

increase the value by c, decrease the value by c, or leave it unchanged. We are given no

further information about P̂. Consider the naïve solution, which tries every combination of

variable perturbations and selects the input corresponding to the greatest output value:

Algorithm 1 Brute Force Adversary

1: procedure BfAdversary(P̂ : Rm → R, c : R, g1 : R, g2 : R, . . ., gm : R): Rm

2: if m = 1 then ▷ Evaluate P̂ and return the best variable perturbation

3: return argmax{P̂(g1 + c), P̂(g1 − c), P̂(g1)}

4: else ▷ Partially apply candidate perturbation and recurse

5: return argmax{P̂(g1 + c)◦BfAdversary(P̂(g1 + c), c, g2, . . . , gm),

P̂(g1 − c)◦BfAdversary(P̂(g1 − c), c, g2, . . . , gm),

P̂(g1)◦BfAdversary(P̂(g1), c, g2, . . . , gm)}

6: end if

7: end procedure

As we can see, Algorithm 1 is O(3m) with respect to dim g – not a very efficient search

routine, especially if we want to consider a larger set of perturbances. Clearly, if we want to

find the best direction to update g, we need to be more careful when performing the search.

Even if we cannot compute a closed-form for ∇gP̂, if P̂ is differentiable almost every-

where, we can still use numerical differentiation to approximate pointwise values of the

gradient. Consider Algorithm 2, which uses the finite difference method to approximate

∇gP̂. This tells us how to minimally change the input to produce the largest output in

reach, without needing to exhaustively check every perturbation as in Algorithm 1.

63

Algorithm 2 Finite Difference Adversary

1: procedure FdAdversary(P̂ : Rm → R, c : R, g1 : R, g2 : R, . . ., gm : R): Rm

2: if m = 1 then ▷ Compute finite (centered) difference and perform gradient ascent

3: return g1 +
P̂(g1−c)−P̂(g1+c)

2c

4: else ▷ Apply single-step gradient ascent using componentwise finite difference

5: return g1 +
P̂(g1−c,0,...)−P̂(g1+c,0,...)

2c
, FdAdversary(P̂, c, g2, . . . , gm)

6: end if

7: end procedure

We now have a procedure that is O(m) with respect to P̂, but must be recomputed for

each input – we can still do better by assuming further structure on P̂. Furthermore, we

have not yet incorporated any constraint on the input values. Perhaps we can combine the

notion of metamorphic testing seen in § 4.1.5 with constrained optimization to accelerate

the search for adversarial examples.

During backpropagation we perform gradient descent on a differentiable function with

respect to its parameters for a specific set of inputs. In gradient-based adversarial testing, we

perform gradient ascent on a loss function with respect to the inputs using a fixed parameter

setting. Suppose we have a differentiable vector function P̂ : Rm → Rn, defined as follows:

P̂k(x;Θ) =

p̂1(Θ1) ◦ x if k = 1

p̂k(Θk) ◦ P̂k(Θ[1,k]) ◦ x if k > 1
(Eq. 3.1.12 revisited)

In deep learning, given pairs X = {x(1), . . . ,x(z)},Y = {y(1) = P(x(1)), . . . ,y(z) = P(x(z))}

we want to find Θ∗ = arg min
Θ

L
(
P̂k(x(i);Θ),y(i)

)
which is typically achieved by performing

stochastic gradient descent on the loss with respect to the model parameters:

Θ← Θ− α1
z
∇Θ

z∑
i=1

L
(
P̂k(x(i);Θ),y(i)

)
(Eq. 3.1.13 revisited)

We can solve for the gradient with respect to Θ by multiplying the Jacobians (Eq. 3.1.7),

Jp1 · · · Jpk
. In white box adversarial learning, we are given a fixed Θ 2 and control the

value of x, so we can rewrite P̂k(x(i);Θ) instead as P̂(x), and take the gradient directly with

respect to x. Our objective is to find the “worst” x within a small distance of any x(i), i.e.

2In contrast with backpropagation, where the parameters Θ are updated.

64

where P(x) least resembles P̂(x). More concretely, this can be expressed as,

x∗ = arg max
x

L
(
P̂(x),y(i)

)
subject to CS = {x ∈ Rm s.t. ||x(i) − x||p < ϵ} (4.1.1)

To do so, we can initialize x ∼ U [CS] and perform projected gradient ascent on the loss:

x← ΦCS

(
x + α∇xL

(
P̂(x),y(i)

))
, where ΦCS(ϕ

′) = arg min
ϕ∈CS

1

2
||ϕ− ϕ′||22 (4.1.2)

Assuming zero knowledge about the program P̂’s implementation or data distribution,

DP̂, we can do no better than random search [Wolpert and Macready, 1997]. Assuming P̂
is differentiable, given input-output values we can use zeroth-order optimization techniques

to approximate ∇xL. Assuming P̂ is open source, we could use coverage-guided fuzzing to

prioritize the search for inputs more likely to violate T. If P̂ is both open source and differ-

entiable, we can accelerate the search by using automatic differentiation. Given additional

information about the training distribution, we could initialize the search in unseen regions

of the input space, e.g. sample from the inverse distribution x ∼ 1
DP̂

, possibly more likely to

elicit an error. But all this requires a great deal of human expertise to implement efficiently.

What if it were possible to generate an adversary instead of manually constructing one?

4.1.7. Generative adversarial testing

What are the properties of a good adversary? For an adversary to be considered a

strong adversary, a significant fraction of her attacks must break the program specification.

To generate plausible test cases, not only must she be able to exploit weaknesses of the

program, but ideally possess a good understanding of pdata.

Suppose we have a program D : Rh → B, i.e. a binary classifier. How should we attack

its implementation, without a custom adversary, or defining some prior distribution over the

inputs? One solution, known as a generative adversarial network [Goodfellow et al., 2014]

(GAN), proposes to train a “generative” adversary G : Rv → Rh alongside the trained model.

The vanilla GAN objective can be expressed as a minimax optimization problem:

min
G

max
D

V (D,G) = Ex∼pdata
[

logD(x)
]
+ Ez∼pz

[
log

(
1−D

(
G(z(i))

))]
(4.1.3)

This objective can be sought by sampling minibatches x ∼ pdata and z ∼ pG, then

updating the parameters of G and D using their respective stochastic gradients:

65

ΘD ← ΘD +∇ΘD

1

m

m∑
i=1

[
logD(x(i)) + log

(
1−D

(
G(z(i))

))]
(4.1.4)

ΘG ← ΘG −∇ΘG

1

m

m∑
i=1

log
(
1−D

(
G(z(i))

))
(4.1.5)

Albuquerque et al. [2019] propose an augmented version of this game using multiple Dis-

criminators which each receive a fixed, random projection Pk(·) of the Generator’s output,

and solves the following multi-objective optimization problem:

minLG(x) =
[
l1(z), l2(z), . . . , lK(z)

]
, where lk = −Ez∼pz logDk

(
Pk

(
G(zk)

))
(4.1.6)

This can be solved by combining the losses using a form of hypervolume maximization:

∇ΘLG =
K∑
k=1

1

η − lk
∇Θlk (4.1.7)

Where η is a common, fixed upper bound on every lk. Further GAN variants such

as WGAN [Arjovsky et al., 2017], MHGAN [Turner et al., 2019], et al. have proposed

augmentations to the vanilla GAN to improve stability and sample diversity. GANs have

been successfully applied in various domains from speech [Donahue et al., 2019] to graph

synthesis [Wang et al., 2018c]. One practical extension to the latter could be applying the

GAN framework to program synthesis and compiler optimization by choosing a suitable

metric and following the approach proposed by e.g. Adams et al. [2019], Mendis et al. [2019].

The trouble with GANs is that we need to train G and D in lockstep, otherwise one

quickly becomes too strong. What happens if we want to attack a pretrained model?

4.2. Probabilistic adversarial testing

Henceforth we shall refer to L
(
P̂(x),y

)
as L(x). Imagine a single test T : Rm → B:

T(x) = L(x) < C (4.2.1)

Our goal is to find a set of inputs which break our test given a computational budget Be (i.e.

fixed number of program evaluations) and labeling budget Bl (i.e. fixed number of labels).

{DT : x ∈ CS | L(x) < C}, maximize |DT| subject to Be,Bl (4.2.2)

Let us consider an extension of classical fuzzing methods to differentiable functions on

continuous random variables. First, we sample an input xj : Rm ∼ Sm (e.g. uniformly). If

66

L(xj) satisfies Eq. 4.2.1, we ascend the loss following ∇xL, otherwise we descend and repeat

until the test “flips”, gradient vanishes, or a fixed number of steps Imax are reached before

resampling xj+1 from Sm. This procedure is described in Algorithm 3.

We hypothesize that if P̂’s implementation were flawed and a counterexample to Eq. 4.2.1

existed, as sample size increased, a subset of trajectories would fail to converge at all, a subset

would converge to local optima, and the remaining trajectories would discover the boundary.

Algorithm 3 Probabilistic Generator
1: procedure ProbGen(L : Rm → R, Sm, T : Rm → B, Be : R)

2: DT ← {}, j ← 0

3: while 0 < Be do ▷ Iterate until computational budget exhausted

4: xj ∼ Sm ▷ Sample from Sm
5: if T

(
xj, C

)
then ▷ Inside feasible set, perform gradient ascent

6: DT ← DT ∪ DiffShrink(−L,xj,T)

7: else ▷ Outside feasible set, perform gradient descent

8: DT ← DT ∪ DiffShrink(L,xj,T)

9: end if

10: Be ← Be − 1

11: end while

12: return DT

13: end procedure

We evaluate our algorithm in the regression setting, where P̂ is a polynomial regressor

(cf. § B.2) and L is the mean squared error loss.

Our training set consists of input-output pairs from a set of random algebraic expressions.

These expressions are produced by generating perfect binary trees of depth 5, whose leaf

nodes contain with equal probability either (1) an alphabetic variable or (2) a random 64-

bit IEEE 754 floating point number uniformly sampled in the range [−1, 1]. The internal

nodes contain with equal probability a random operator in the set {+,×}. Our expression

generator (Eq. 4.2.3) with type Ge : N+ × Z → R[1,26] → R takes a depth δ : N+, a random

seed ψ : Z, and returns a scalar-valued function.

67

Algorithm 4 Differential Shrinker
1: procedure DiffShrink(L : Rm → R, x1 : Rm, T : Rm → B)

2: i← 1, ti ← T
(
xi, C

)
▷ Store initial state to detect when test flips.

3: do

4: i← i+ 1,xi ← ΦCS

(
xi−1 − α∇xL(xi−1)

)
▷ PGD step (Eq. 4.1.2)

5: if T
(
xi, C

)
̸= t1 then ▷ Boundary value was found.

6: return if t1 then {xi} else {xi−1} end if ▷ Always return violation.

7: end if

8: while i ≤ Imax and ϵ < |L(xi)− L(xi−1)| ▷ While not converged.

9: return if ¬t1 then {xi−1} else ∅ ▷ Return last iterate or ∅ if test passed.

10: end procedure

Ge(δ, ψ) =



δ ≤ 0

δ ∼ψ {a,b,..z} if γ ∼ψ {True, False},

χ ∼ψ U(−1, 1) otherwise.

δ > 0

G(δ − 1, ψ + 1) +G(δ − 1, ψ − 1) if γ ∼ψ {True, False},

G(δ − 1, ψ + 1)×G(δ − 1, ψ − 1) otherwise.

(4.2.3)

A Kotlin implementation of the expression tree generator in Eq. 4.2.3 is shown below:

val sum = { left: SFun<DReal>, right: SFun<DReal> -> left + right }

val mul = { left: SFun<DReal>, right: SFun<DReal> -> left * right }

val operators = listOf(sum, mul)

val variables = ('a'..'z').map { SVar<DReal>(it) }

infix fun SFun<DReal>.wildOp(that: SFun<DReal>) = operators.random(rand)(this, that)

fun randomBiTree(height: Int): SFun<DReal> =

if (height == 0) (listOf(wrap(rand.nextDouble(-1.0, 1.0))) + variables).random(rand)

else randomBiTree(height - 1) wildOp randomBiTree(height - 1)

Our training set consists of input-output pairs produced by binding the set of free vari-

ables to values, and numerically evaluating the expression on input values sampled from

[−1,−0.2] ∪ [0.2, 1], then rescaling all outputs to [−1, 1] using min-max normalization, i.e.

G̃e(δ, ψ) =
Ge(δ,ψ)

max |Ge(δ,ψ)[−1,1]| . Each expression has a unique validation set xi ∼ [−0.2, 0.2].

68

In Fig. 4.2, we see train and validation losses for 200 trajectories of momentum SGD

through parameter space. To compensate for the difference in magnitude between training

and validation error, we normalize all losses by their respective values at t0. Based on the

validation loss, we apply early stopping at approximately 50 epochs.

Algorithm 5 Surrogate Attack

1: procedure SurrogateAttack(Θ : Rk, f̂ : Rm × Rk → Rn, Sm, T : Rm → B, Bl : R)

2: Θ′ ← Θ

3: do

4: x ∼ Sm,y← O(x),Bl ← Bl − 1 ▷ Ask for new label from the oracle.

5: Θ′ ← Θ− α∇Θ||̂f(x;Θ′)− y||2, ▷ Update parameters using loss gradient.

6: while 0 < Bl ▷ Iterate until labeling budget exhausted.

7: L̂ ← ||̂f(Θ′)− f̂(Θ)||2 ▷ Construct the surrogate loss.

8: return ProbGen(L̂,Sm,T,Be)
9: end procedure

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

Epochs

t 0
-n

or
m

al
iz

ed
M

SE

Average loss curves for polynomial regression using momentum SGD

Training
Validation

Fig. 4.2. For each expression in our dataset, we train a polynomial regressor to convergence.

69

*

*

+

+

+*

*0.307

x

+-

*

+

-

*

+

+
-

+ *

-

+

0.355

0.188

0.886

-1.08

0.188

1.0

pow1.555

-One

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

x

y

*

*

+

+

+

+

+0.108

x

*

+

+

+
-

+

-

+

+

*

-

*+

-0.64

0.186

0.308

0.638

0.119

0.518

1.0

pow2.930

-One

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

x

y

*

*

+

+

+

+

+

x

-

*

+

*

*

+

-

+ -

+

*
-

+

0.375

0.791 1.261

-0.65

0.236

0.494

-0.23

1.0

pow3.506

-One −1 −0.5 0 0.5 1

0

0.5

1

x

y

Table 4.1. Some DFGs generated by Eq. 4.2.3 with accompanying 2D plots.

Below, is an excerpt from an implementation of momentum SGD in the Kotlin∇ DSL:

val model = Vec(D30) { x pow (it + 1) } dot weights

var update = Vec(D30) { 0.0 }

batches.forEach { i, batch ->

val batchInputs = arrayOf(xBatchIn to batch.first, label to batch.second)

val batchLoss = (model - label).magnitude()(*batchInputs)

val weightGrads = (d(batchLoss) / d(weights))(*newWeights)

update = beta * update + (1 - beta) * weightGrads

newWeights = newWeights - alpha * update

}

70

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

x

y
Oracle vs. Regression Model

Oracle (f)

Model (f̂)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

·10−3

x

Lo
ss

True vs. Surrogate Loss

True Loss (L)
Surrogate Loss (L̂)

Table 4.2. Above: Ground truth and trained model predictions for a single expression.

Below: A single particle attacks the model by seeking higher error on the surrogate loss.

Our adversary (Algorithm 5) takes as input the trained regression model f̂ , a set of

new input-output pairs from the ground truth expression, and resumes the original training

procedure on f̂ using the supplied datapoints for a fixed number of epochs, to produce a

new model f̂ ′. We use f̂ ′ to construct a surrogate loss L̂(x) =
(
f̂(x) − f̂ ′(x)

)2, which can

be maximized using Algorithm 4. Maximizing the surrogate loss allows us to construct

adversarial examples without direct access to the oracle, an often impractical assumption

in real world settings. For both adversarial testing and uniform sampling strategies, we

compare the average number of violations detected per evaluation.

71

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

σ

Av
er

ag
e

er
ro

rs
de

te
ct

ed
pe

r
la

be
l Average efficiency at error threshold σ standard deviations above MSE

Probabilistic Generator
Differential Adversary

Fig. 4.3. By construction, our shrinker detects a greater number of errors per evaluation

than one which does not take the gradient into consideration.

Above, we show the number of violations exceeding error threshold σ standard deviations

above the mean squared error (MSE) on the true loss L(x) =
(
f(x)−f̂(x)

)2. On average, our

adversary exhibits a 28% improvement over the probabilistic baseline across all thresholds.

We hypothesize that training the surrogate loss to convergence would further widen this

margin, albeit potentially at the cost of generalization on other expressions.

4.3. Conclusion

In this chapter we have visited some interesting ideas for validating intelligent systems

from the perspective of software engineering and machine learning. We have seen a curious

resemblance between some new and old ideas in fuzz testing and adversarial learning. We

have proposed new a framework for evaluating differentiable programs in a low-cost manner

and shown our approach is more data-efficient than a random search strategy, employed by

most automated testing frameworks. This enables us to detect a greater number of errors

with a lower computational and data collection budget. The author wishes to thank Liam

Paull for providing a number of very helpful suggestions and Stephen Samuel for the excellent

KotlinTest [Samuel and Lopes, 2018] library. This work was partly inspired by Lample and

Charton [2019], in particular the expression tree generator from § 4.2.

72

https://github.com/kotlintest/kotlintest

Chapter 5

Tools for reproducible robotics

“Building on the work of others is the only way to make substantial progress in any field.

Yet computer programming continues as a cottage industry because programmers insist on

reinventing programs for each new application, instead of using what already exists. We

must encourage a way of packaging programs so that they can be perceived as standard

tools, each performing its specialized task sufficiently well and interfacing to other tools so

conveniently that programmers seldom feel any need to make their own version from scratch.”

–Kernighan and Plauger [1976], Software tools

In this chapter, we discuss the challenge of software reproducibility and how best prac-

tices in software engineering such as continuous integration and containerization tools can

help researchers mitigate the variability associated with building and maintaining robotics

software. Broadly, our work attempts to isolate sources of computational variability, and

does not consider notions of statistical variability arising from aleatoric or epistemic uncer-

tainty [Diaz Cabrera, 2018]. However, minimizing the computational variability (which often

impedes experimental reproducibility) is a key step in enabling researchers to more rapidly

identify and diagnose these more elusive variables in robotics and machine learning.

In order to address the issue of software reproducibility, we assembled a set of tools

and development workflows representing best practices in software engineering. These tools

are primarily based on containerization, a widely adopted virtualization technology in the

software industry. To lower the barrier of entry for new contributors and minimize variability

across hardware platforms, we developed a state-of-the-art container infrastructure based

on Docker [Merkel, 2014], one popular container engine. Docker allows users to set up

versioned deployment artifacts which effectively freeze an entire filesystem, and manage

resource constraints via a sandboxed runtime environment.

https://dl.acm.org/doi/10.1145/1010726.1010728

The contents of this chapter are organized as follows. In § 5.1 we introduce the problem

of dependency resolution and the challenge of building reproducible software artifacts. In

§ 5.2, we describe a broad solution to this problem, software virtualization. Next, in § 5.3,

we discuss a lightweight approach to virtualization, known as containerization. In § 5.4, we

take a guided tour through one container implementation, called Docker. Finally, in § 5.5, we

present DuckieOS, a Dockerized environment for building reproducible robotics applications

for research and pedagogical use.

5.1. Dependency management

One common source of variability in software development are software dependencies.

For many years, developers struggled with dependency management before it was discovered

the dependency resolution problem was NP-complete [Abate et al., 2012]. If we assume no

two versions of the same dependency can be installed simultaneously, then for a given set

of software packages which must be installed, and dependencies required to install them,

determining the most recent consistent version of the dependencies is as hard as the hardest

problems in NP. Informally, this problem is known as dependency hell and becomes increas-

ingly problematic as software projects grow and introduce new dependencies.

Dependency hell does not just arise inside individual software projects, but across projects

and development environments. Hundreds of package managers have been developed for var-

ious operating systems, programming languages, and development frameworks. Ubuntu has

the Advanced Package Tool (apt), macOS has Homebrew (brew), Windows has Chocolatey

(choco). Most programming language ecosystems have their own bespoke package managers;

Conan for C/C++, Maven for Java, and Cabal for Haskell. Python has developed many

overlapping solutions for package management, including pip, Anaconda, PyEnv, Virtualenv,

and others. Some of these install system-wide packages, and others provide command line

environments. Over the lifetime of a computer system, as packages are installed and partially

removed it becomes difficult to keep track of changes and their side effects.

The problem basically stems from the requirement that no two versions of the same

dependency can be installed simultaneously. In addition, software installers tend to spray

files across the file system, which can become corrupted and are difficult to completely

remove should the need arise. To address these issues, some notion of “checkpointing” is

74

https://help.ubuntu.com/lts/serverguide/apt.html
https://brew.sh/
https://chocolatey.org/
https://conan.io/
https://maven.apache.org
https://www.haskell.org/cabal/
https://pypi.org/project/pip/
https://www.anaconda.com/
https://github.com/pyenv/pyenv
https://virtualenv.pypa.io/

required, so that when new software is installed, any future changes can be traced and

reverted. Hardware backups would do the job, but are cumbersome to manage and are

unsuitable for development purposes. Rather, it would be convenient to have a tool which

allowed applications to create a private file system, install their dependencies, and avoid

contaminating the host OS.

5.2. Operating systems and virtualization

With the growth of developer operations (devops) a number of solutions emerged for

building and running generic software artifacts. Most primitive of these are emulators,

which completely simulate a foreign processor architecture, and thereby any software which

runs ontop of it. Another solution are virtual machines (VMs), a kind of isolated run-

time environment which use a hypervisor to mediate access to hardware, but usually run

on bare metal. The downside of both methods is their efficiency. Virtual machines contain

full-fledged operating systems and are therefor cumbersome to run and debug. This is partic-

ularly unnecessary for building and running a small application on a foreign OS. Emulators

run significantly more slowly than native machine code depending on the host and target

architectures.

In 2006, Linux introduced several new kernel features for controlling groups of processes,

under the aegis of cgroups [Menage, 2007]. Collectively, these features support a form of

lightweight virtualization, featuring many of the benefits of virtual machines (VMs) such as

resource control and namespace isolation, without the computational overhead associated

with full virtualization. These features paved the way for a set of tools that are today known

as containers. Unlike VMs, containers share a common kernel, but remain isolated from

their host OS and sibling containers. Where VMs often require server-class hardware to run

smoothly, containers are suitable for a much broader class of mobile and embedded platforms

due to their light resource footprint.

5.3. Containerization

One of the challenges of distributed software development across heterogeneous platforms

is the problem of variability. With today’s increasing pace of software development comes

the added burden of software maintenance. As hardware and software stacks evolve, source

75

Fig. 5.1. Full virtualization is a very resource-hungry process. Containerization is cheaper,

as it shares a kernel with the host OS. Emulation lets us emulate hardware as software. Any

of these methods can be used in conjunction with any other.

code must periodically be updated to build and run correctly. Maintaining a stable and

well-documented codebase can be a considerable challenge, especially in an academic setting

where contributors are frequently joining and leaving a project. Together, these challenges

present significant obstacles to experimental reproducibility and scientific collaboration.

Fig. 5.2. Containers live in user space. By default they are sandboxed from the host OS

and sibling containers, but unlike VMs, share a common kernel with each other and the host

OS. All system calls are passed through host kernel.

Docker containers are sandboxed runtime environments that are portable, reproducible

and version-controlled. Each environment fully contains its dependencies, but remains iso-

lated from the host OS and file system. Docker provides a mechanism to control the resources

each container is permitted to access, and provisions a separate Linux namespace for each

76

container, effectively isolating the network, users, and file system mounts from the host

OS. Unlike virtual machines, container-based virtualization tools like Docker are suitable for

portable SBCs and can run with close to zero overhead compared to native Linux processes.

A single Raspberry Pi is capable of simultaneously running hundreds of containers with no

noticeable degradation in performance.1

While containerization considerably simplifies the process of building and deploying appli-

cations, it also introduces some additional complexity in the software development lifecycle.

Docker, like most container platforms, uses a layered filesystem. This enables Docker to take

an existing “image” and change it by installing new dependencies or modifying its functional-

ity. Images are typically constructed as a sequence of layers, each of which must periodically

be updated. Care is required when designing the development pipeline to ensure that such

updates do not silently break a subsequent layer, as we describe in § 5.7.

5.4. Introduction to Docker

Suppose there is a program which is known to run on some computer. It would be nice to

give another computer – any computer with an internet connection – a short string of ASCII

characters, press , and return to see that same program running. Never mind where

the program was built or what software happened to be running at the time. This may

seem trivial, but is a monumental software engineering problem. Various package managers

have attempted to solve this, but even when they work as intended, only support natively

compiled binaries on operating systems with the same package manager.

Docker2 is a tool for portable, reproducible computing. With Docker, users can run any

Linux program on almost any networked computing device on the planet, regardless of the

underlying operating system or hardware architecture. All of the environment preparation,

installation and configuration steps can be automated from start to finish. Depending on

how much network bandwidth is available, it might take some time, but users will never need

to intervene in the installation process.

To install Docker itself, execute the following command on a POSIX-compliant shell of

any Docker-supported platform:

1https://blog.docker.com/2015/09/update-raspberry-pi-dockercon-challenge/
2The following tutorial uses Docker, but the workflow described is similar to most container platforms.

77

https://docs.docker.com/install/#supported-platforms
https://blog.docker.com/2015/09/update-raspberry-pi-dockercon-challenge/

 curl -sSL https://get.docker.com/ | sh

A Docker image is basically a filesystem snapshot – a single file that contains everything

needed to run a certain Docker container. Docker images are hosted in registries, similar

to Git repositories or VCS servers. The following command will fetch a Docker image, e.g.

daphne/duck from the default Docker Hub repository:

 docker pull daphne/duck

Every Docker image has an image ID, a name and a tag:

 docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

daphne/duck latest ea2f90g8de9e 1 day ago 869MB

To run a Docker container3, use the following command:

 docker run daphne/duck

The following command will verify the container is indeed running:

 docker ps

CONTAINER ID IMAGE ... NAMES

52994ef22481 daphne/duck ... happy_hamster

Note how Daphne’s image has an alphanumeric container ID, 52994ef22481, a base im-

age, daphne/duck, and a memorable name, happy_hamster. This name is an alias for the

container ID, which can be used interchangeably to refer to the container.

Docker images can be created two different ways. First, in § 5.4.1, we will see how to

create a Docker image by taking a snapshot from a running container, then in § 5.4.2, how

to create a new Docker container using a special kind of recipe, called a Dockerfile.

3When a Docker image is running, it is referred to as a container.

78

https://docs.docker.com/engine/reference/builder/

5.4.1. Creating an image snapshot

When a Docker container writes to its own filesystem, those changes are not persisted

unless committed to a new image. For example, start a container with an interactive shell:

 docker run -it daphne/duck /bin/bash

root@295fd7879184:/#

Note the container ID: 295fd7879184. If we write to disk and leave the container,

root@295fd7879184:/# touch new_file && ls -l

total 0

-rw-r--r-- 1 root root 0 May 21 20:52 new_file

root@295fd7879184:/# exit

new_file will not be persisted. If we re-run the same command again:

 docker run -it daphne/duck /bin/bash

root@18f13bb4571a:/# ls

root@18f13bb4571a:/# touch new_file1 && ls -l

total 0

-rw-r--r-- 1 root root 0 May 21 21:32 new_file1

It seems like new_file has disappeared! Notice how the container ID (18f13bb4571a) is now

different. This is because the command docker run daphne/duck created a new container

from the base image daphne/duck, rather than restarting the previous container. To see all

containers on a Docker host, run the following command:

 docker container ls -a

CONTAINER ID IMAGE STATUS NAMES

295fd7879184 daphne/duck Exited (130) merry_manatee

18f13bb4571a daphne/duck Up 5 minutes shady_giraffe

52994ef22481 daphne/duck Up 10 minutes happy_hamster

It appears 295fd7879184 a.k.a. merry_manatee survived, but it is no longer running. When-

ever a container’s main process (recall we ran merry_manatee with /bin/bash) finishes, the

79

container will stop, but it will not cease to exist. In fact, we can resume the stopped container

right where it left off:

 docker start -a merry_manatee

root@295fd7879184:/# ls -l

total 0

-rw-r--r-- 1 root root 0 May 21 20:52 new_file

Nothing was lost! To verify this, we can check which other containers are running:

 docker ps

CONTAINER ID IMAGE ... NAMES

295fd7879184 daphne/duck ... merry_manatee

18f13bb4571a daphne/duck ... shady_giraffe

52994ef22481 daphne/duck ... happy_hamster

Now suppose we would like to share the container shady_giraffe with someone else. To do

so, we must first snapshot the running container, or commit it to a new image with a name

and a tag. This will create a checkpoint that we may later restore:

 docker commit -m "forking daphne/duck" shady_giraffe user/duck:v2

To refer to the container, we can either use 18f13bb4571a or the designated name, i.e.

shady_giraffe. This image repository will be called user/duck, and has an optional version

identifier, :v2, which can be pushed to the Docker Hub registry:

 docker push user/duck:v2

 docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

daphne/duck latest ea2f90g8de9e 1 day ago 869MB

user/duck v2 d78be5cf073e 2 seconds ago 869MB

 docker pull user/duck:v2

 docker run user/duck:v2 ls -l

total 0

-rw-r--r-- 1 root root 0 May 21 21:32 new_file1

80

This is a convenient way to share an image with colleagues and collaborators. Anyone with

access to the repository can pull this image and continue where we left off, or create another

image based on top.

5.4.2. Writing an image recipe

The second way to create a Docker image is to write a recipe, called a Dockerfile. A

Dockerfile is a text file that specifies the commands required to create a Docker image,

typically by modifying an existing container image using a scripting interface. They also

have special keywords (which are conventionally CAPITALIZED), like FROM, RUN, ENTRYPOINT

and so on. For example, create a file called Dockerfile with the following content:

FROM daphne/duck # Defines the base image

RUN touch new_file1 # new_file1 will be part of our snapshot

CMD ls -l # Default command run when container is started

Now, to build the image, we can simply run:

 docker build -t user/duck:v3 .

The . indicates the current directory, which should be the same one containing our Docker

file. This command should produce something like the following output:

Sending build context to Docker daemon 2.048kB

Step 1/3 : FROM daphne/duck

--- ea2f90g8de9e

Step 2/3 : RUN touch new_file1

--- e3b75gt9zyc4

Step 3/3 : CMD ls -l

--- Running in 14f834yud59

Removing intermediate container 14f834yud59

--- 05a3bd381fc2

Successfully built 05a3bd381fc2

Successfully tagged user/duck:v3

The command, docker images should display an image called user/duck:v3:

81

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#from
https://docs.docker.com/engine/reference/builder/#from
https://docs.docker.com/engine/reference/builder/#entrypoint

 docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

daphne/duck latest ea2f90g8de9e 1 day ago 869MB

user/duck v2 d78be5cf073e 5 minutes ago 869MB

user/duck v3 05a3bd381fc2 2 seconds ago 869MB

This procedure is identical to the snapshot technique performed in § 5.4.1, but the result

is cleaner. Rather than maintaining a 869 MB image, we can just store the 4 KB text file

instead. To run the resulting image, we can simply use the same command as before:

 docker run -it user/duck:v3

total 0

-rw-r--r-- 1 root root 0 May 21 21:35 new_file1

Notice that as soon as we run the container, Docker will execute the ls -l command as

specified by the Dockerfile, revealing that new_file1 was indeed stored in the image.

However, this default command can be overridden by supplying a custom command:

 docker run -it user/duck:v3 [custom command]

5.4.3. Layer caching

Layers are an important concept to understand when working with Docker. One way to

think of a layer is like a Git commit – a set of changes to a previous image or layer, uniquely

identified by a hash code. In a Dockerfile, layers begin with a keyword.

FROM daphne/duck

RUN touch new_file1 # Defines a new layer

RUN mkdir config && mv new_file1 config # Layers can chain commands

RUN apt-get update && apt-get install -y wget # Install a dependency

RUN wget https://get.your.app/install.sh # Download a script

RUN chmod +x install.sh && ./install.sh # Run the script

To build this image, we can run the following command:

82

https://docs.docker.com/storage/storagedriver/#images-and-layers
https://docs.docker.com/engine/reference/builder/#from

 docker build -t user/duck:v4 .

Sending build context to Docker daemon 2.048kB

Step 1/6 : FROM daphne/duck

---> cd6d8154f1e1

...

Removing intermediate container 8fb56ef38bc8

---> 3358ca1b8649

Step 5/6 : RUN wget https://get.your.app/install.sh

---> Running in e8284ff4ec8b

...

2018-10-30 06:47:57 (89.9 MB/s) - 'install.sh' saved [13847/13847]

Removing intermediate container e8284ff4ec8b

---> 24a22dc2900a

Step 6/6 : RUN chmod +x install.sh && ./install.sh

---> Running in 9526651fa492

Executing install script, commit: 36b78b2

...

Removing intermediate container 9526651fa492

---> a8be23fea573

Successfully built a8be23fea573

Successfully tagged user/duck:v4

Layers are conveniently cached by the Docker daemon. Should we need to run the same

command twice, Docker will use the cache instead of rebuilding the entire image:

"

Sending build context to Docker daemon 2.048kB

Step 1/6 : FROM daphne/duck

---> cd6d8154f1e1

Step 2/6 : RUN touch new_file1

---> Using cache

---> 0473154b2004

...

Step 6/6 : RUN chmod +x index.html && ./index.html

---> Using cache

83

https://docs.docker.com/engine/reference/commandline/dockerd/

" ---> a8be23fea573

Successfully built a8be23fea573

Successfully tagged user/duck:v4

If we need to make a change to the Dockerfile, Docker will only rebuild the image starting

from the first modified step. Suppose we were to add a new RUN command at the end of our

Dockerfile and trigger a rebuild like so:

 echo 'RUN echo "Change here!"' >> Dockerfile

 docker build -t user/duck:v4 .

Sending build context to Docker daemon 2.048kB

...

Step 6/7 : RUN chmod +x index.html && ./index.html

---> Using cache

---> a8be23fea573

Step 7/7 : RUN echo "Change here!"

---> Running in 80fc5c402304

Change here!

Removing intermediate container 80fc5c402304

---> c1ec64cef9c6

Successfully built c1ec64cef9c6

Successfully tagged user/duck:v4

If Docker had to rerun the entire Dockerfile from top to bottom each time it was rebuilt,

this would be slow and inconvenient. Instead, Docker caches the unmodified steps by default,

and only reruns the minimum set of steps necessary to rebuild. This can sometimes introduce

unexpected results, especially when the cache is stale. To ignore the cache and force a clean

rebuild, use the --no-cache flag when building a Dockerfile.

What does Docker consider when deciding whether to use the cache? First is the Dock

erfile itself – when a step in a Dockerfile changes, both it and any subsequent steps will

need to be rerun during a build. Docker also checks the build context for changes. When

docker build -t TAG . is written, the . indicates the build context, or path where the build

should occur. Often, this path contains build artifacts. For example:

84

https://docs.docker.com/engine/reference/commandline/build/#extended-description

FROM daphne/duck

COPY duck.txt .

RUN cat duck.txt

Now if we add some message in duck.txt and rebuild our image, the file will be copied into

the Docker image, and its contents will be printed:

 echo "Make way!" > duck.txt && docker build -t user/duck:v5 .

Sending build context to Docker daemon 3.072kB

Step 1/3 : FROM daphne/duck

---> cd6d8154f1e1

Step 2/3 : COPY duck.txt .

---> e0e03d9e1791

Step 3/3 : RUN cat duck.txt

---> Running in 590c5420ce29

Make way!

Removing intermediate container 590c5420ce29

---> 1633e3e10bef

Successfully built 1633e3e10bef

Successfully tagged user/duck:v5

As long as the first three lines of the Dockerfile and duck.txt are unmodified, these layers

will be cached and Docker will not rebuild them. If the contents of the file duck.txt are

subsequently modified, this will trigger a rebuild to occur. For example, if we append to the

file and rebuild, only the last two steps will need to be executed:

"

 echo "Thank you. Have a nice day!" >> duck.txt

 docker build -t user/duck:v5 .

Sending build context to Docker daemon 3.072kB

Step 1/3 : FROM ubuntu

---> cd6d8154f1e1

Step 2/3 : COPY duck.txt .

---> f219efc150a5

Step 3/3 : RUN cat duck.txt

85

" ---> Running in 7c6f5f8b73e9

Make way!

Thank you. Have a nice day!

Removing intermediate container 7c6f5f8b73e9

---> e8a1db712aee

Successfully built e8a1db712aee

Successfully tagged user/duck:v5

A common mistake when writing Dockerfiles is to COPY more files than are strictly necessary

to perform the following build step. For example, if COPY . . is written at the beginning of

the Dockerfile, whenever any file is changed within the build context, this will trigger a

rebuild of all subsequent build steps. In order to maximize cache reusability and minimize

rebuild time, users should be as conservative as possible and only COPY the minimum set of

files necessary to accomplish the following build step.

5.4.4. Volume sharing

There is a second method of depositing data into a container, which does not require

baking it into the parent image at compile-time. This method is more appropriate for data

which is required at runtime, but non-essential for the build. It takes the following form:

 docker run user/duck:v6 -v HOST_PATH:TARGET_PATH

Suppose we have a Dockerfile which provides a default CMD instruction:

FROM daphne/duck

CMD /bin/bash -c "/launch.sh"

If we built this image and tried to run it, the file /launch.sh would be missing:

 docker build -t user/duck:v6 && docker run user/duck:v6

bash: /launch.sh: No such file or directory

Instead, when running the container, we need to share the file via the Docker CLI:

86

 echo -e '#!/bin/bash\necho Launching...' >> launch.sh && \

chmod 775 launch.sh && \

docker run user/duck:v6 -v launch.sh:/launch.sh

Launching...

This way, the local file launch.sh will be available to use from within the container at the

designated path, /launch.sh.

5.4.5. Multi-stage builds

Docker’s filesystem is additive, so each layer will only increase the size of the final image.

For this reason, it is often necessary to tidy up unneeded files after installation. For example,

when installing dependencies on Debian-based images, it is a common practice to run:

RUN apt-get update && apt-get install ... && rm -rf /var/lib/apt/listsȂ/*

This ensures the package list is not baked into the image (Docker will only checkpoint the

layer after each step is complete). Builds can often consume several steps, despite only

producing a single artifact. Instead of chaining together several commands and cleaning up

changes in a single step, multi-stage builds let us build a series of images inside a Dockerfile,

and copy resources from one to another, discarding all intermediate build artifacts:

FROM user/duck:v3 as template1

FROM daphne/duck as template2

COPY --from=template1 new_file1 new_file2

FROM donald/duck as template3

COPY --from=template2 new_file2 new_file3

CMD ls -l

Now we can build and run this image as follows:

"

 docker build . -t user/duck:v4

Sending build context to Docker daemon 2.048kB

Step 1/6 : FROM user/duck:v3 as template1

--- e3b75ef8ecc4

87

" Step 2/6 : FROM daphne/duck as template2

--- ea2f90g8de9e

Step 3/6 : COPY --from=template1 new_file1 new_file2

---> 72b96668378e

Step 4/6 : FROM donald/duck:v3 as template3

---> e3b75ef8ecc4

Step 5/6 : COPY --from=template2 new_file2 new_file3

---> cb1b84277228

Step 6/6 : CMD ls

---> Running in cb1b84277228

Removing intermediate container cb1b84277228

---> c7dc5dd63e77

Successfully built c7dc5dd63e77

Successfully tagged user/duck:v4

 docker run -it user/duck:v4

total 0

-rw-r--r-- 1 root root 0 Jul 8 15:06 new_file3

One application of multi-stage builds is compiling a project dependency from its source code.

In addition to all the source code, the compilation process could introduce gigabytes of build

artifacts and transitive dependencies, just to build a single binary. Multi-stage builds allow

us to build the file, and copy it to a fresh layer, unburdened by intermediate files.

5.5. ROS and Docker

White and Christensen [2017] previously explored Dockerizing ROS, whose work forms

the basis for our own, which extends their implementation to the Duckietown platform [Paull

et al., 2017], a more hardware- and domain-specific set of ROS applications.

The Duckietown platform supports two primary instruction set architectures: x86 and

ARM. To ensure the runtime compatibility of Duckietown packages, we cross-build using

hardware virtualization to ensure build artifacts can be run on either target architecture.

88

https://www.duckietown.org

Fig. 5.3. Container infrastructure. Left: The ROS stack targets two primary architec-

tures, x86 and ARM. To simplify the build process, we build ARM artifacts on x86 using

QEMU [Bellard, 2005]. Right: Reinforcement learning stack. Build artifacts are trained on

a GPU, and transferred to CPU for evaluation. Deep learning models may be also be run

on an ARM device using an accelerator.

Runtime emulation of foreign artifacts is also possible, using a similar technique.4 For per-

formance and simplicity, we only use emulation where necessary (e.g., on x86 devices). On

ARM-native, the base operating system is HypriotOS, a lightweight Debian distribution for

the Raspberry Pi and other ARM-based SBCs, with native support for Docker. For both

x86 and ARM-native, Docker is the underlying container platform upon which all user ap-

plications are run, inside a container. Since both ROS and Docker have extensive command

line interfaces, a unified interface, the Duckietown Shell (dts), is provided to wrap their

functionality and perform common tasks.

5.6. Duckiebot development using Docker

Software development for the Duckietown platform requires the following physical objects:

(1) Duckiebot (including custom hat, camera, wheels, and Raspberry Pi 3B+)5

(2) Micro SD card (16GB+ recommended)

(3) Personal computer

4For more information, this technique is described in further depth at the following URL: https://www.

balena.io/blog/building-arm-containers-on-any-x86-machine-even-dockerhub/.
5Full materials list can be located at the following URL: https://get.duckietown.org/

89

https://www.qemu.org
https://software.intel.com/en-us/neural-compute-stick
https://github.com/duckietown/duckietown-shell
https://www.balena.io/blog/building-arm-containers-on-any-x86-machine-even-dockerhub/
https://www.balena.io/blog/building-arm-containers-on-any-x86-machine-even-dockerhub/
https://get.duckietown.org/

(4) Internet-enabled router

(5) MicroSD card adapter

In addition, we assume the following software dependencies have been installed on (3):

(a) Docker CE

(b) POSIX-compliant shell

(c) dts, the Duckietown shell6

(d) Web browser (e.g. Chrome or Firefox)

(e) wget/curl

The following workflow has been tested extensively on Linux hosts running Ubuntu 16.04

(and to a lesser extent, Mac OS X and VMs). No other dependencies are assumed or required.

5.6.1. Flashing a bootable disk

One of the first steps in the Duckiebook requires users to manually install a custom

operating system onto bootable media, a tedious and time-consuming process. The following

installation script was written to automate this process, allowing users to setup a reproducible

software environment more easily:

 bash -c "$(wget -O- h.ndan.co)"

Now, with the Duckietown Shell, the following command is all that is needed:

 init_sd_card [--hostname "DUCKIEBOT_NAME"] [--wifi "username:password"]

Users must insert an SD card and follow the instructions provided. When complete, the

card is removed and inserted into the SD card slot on the Raspberry Pi. On first boot, care

must be taken to ensure the device is powered continuously for a minimum of ten minutes

in order to allow installation to complete and avoid filesystem corruption.

5.6.2. Web interface

To access the DuckieOS web interface, users can visit the following URL in any JavaScript-

enabled web browser: http://DUCKIEBOT_NAME:9000/. If the installation process suc-

cessfully completed and the network is properly configured, the web application displayed

6May be obtained at the following URL: https://github.com/duckietown/duckietown-shell

90

https://get.docker.com
https://www.google.com/chrome/
https://mozilla.org/firefox/
https://github.com/duckietown/duckietown-shell
http://DUCKIEBOT_NAME:9000/
https://github.com/duckietown/duckietown-shell

Fig. 5.4. Browser interface for individual Duckiebots. It is provided by Portainer,

a RESTful web dashboard, which wraps the Docker CLI and offers support for con-

tainer management, configuration, networking and terminal emulation (shown above).
http://DUCKIEBOT_NAME:9000/#/container/container_name “Console” 

in Fig. 5.4 should be accessible. This application allows users unfamiliar with the CLI to

manage Docker containers from within their favorite browser.

5.6.3. Testing ROS

To verify Docker is working properly, launch a remote container, interactively, like so:

 docker -H DUCKIEBOT_NAME run -it --privileged --net host \

duckietown/rpi-ros-kinetic-base:master18

The -H flag indicates a remote Docker host on the local area network where the Docker

command should be executed. For the DUCKIEBOT_NAME address to work, mDNS must be

properly configured in the network settings, otherwise an IP address is required.

5.6.4. Build and deployment

Docker images can be cross-compiled by enclosing the ARM-specific portion of the Dock

erfile with the RUN ["cross-build-start"] and RUN ["cross-build-end"] instructions.

The following command can be used for deployment:

91

https://www.portainer.io/
http://DUCKIEBOT_NAME:9000/##/container/container_name

 docker save TAG_NAME | ssh -C duckie@DUCKIEBOT_NAME docker load

Alternately, it is possible to build directly on ARM devices by creating a file named, e.g.

Dockerfile.arm, adding a base image and build instructions, then running the command:

 docker build --file=FILE_PATH/Dockerfile.arm [--tag TAG_NAME] .

5.6.5. Multi-architecture support

As of Docker version 18.09.6, ARM-specific Dockerfiles will not build on x86 machines7,

and attempting to build one will produce the following error when running docker build:

standard_init_linux.go:175: exec user process caused "exec format error"

In order to circumvent this restriction, ARM-specific Dockerfiles can be ported to run on

x86 by using the RUN ["cross-build-start"] and RUN ["cross-build-end"] directives,

after the FROM and before the CMD instructions. See § C.1.1 for further details.

All Duckietown Docker images ship with the QEMU [Bellard, 2005] emulator – this allows

us to run ARM images on x86 directly. To run a pure compute ROS node (i.e. one that

does not require any camera or motor access) on an x86 platform, developers must supply a

custom entrypoint to Docker when running the image using the entrypoint flag as follows:

 docker run ... --entrypoint=qemu3-arm-static IMAGE [RUN_COMMAND]

Here, RUN_COMMAND may be a shell such as /bin/bash or another command such as /bin/bash

-c "roscore". The entrypoint refers to the ARM emulator packaged within the base image,

duckietown/rpi-ros-kinetic-base, which allows ARM binaries to be run on x86 hosts.

5.6.6. Running a simple HTTP file server

All persistent data is stored in /data. To serve this directory, a web server is provided:

7With the exception of the Mac OS Docker client, which offers multi-architecture support. More recent

versions of Docker Desktop for Mac OS and Windows have introduced native ARM emulation.

92

https://www.qemu.org
https://docs.docker.com/docker-for-mac/multi-arch/
https://engineering.docker.com/2019/04/multi-arch-images/

 docker -H DUCKIEBOT_NAME run -d -v /data:/data -p 8082:8082 \

duckietown/rpi-simple-server:master18

To then access this directory, visit the following URL: http://DUCKIEBOT_NAME:8082/

5.6.7. Camera testing

The following command can be used to test the camera is working properly. By default,

images will be hosted at: http://DUCKIEBOT_NAME:8081/figures/image.jpg

 docker -H DUCKIEBOT_NAME run -d --privileged -v /data:/data -p 8081:8081

duckietown/rpi-docker-python-picamera:master18

Like most commands, a Python-based shell is provided for the user’s convenience:

 duckiebot demo --demo_name camera --duckiebot_name DUCKIEBOT_NAME

5.6.8. Graphical user interface tools

To use GUI tools, one must first allow incoming X connections from the host. On Linux

hosts, this can be done by running xhost + outside Docker.8 A container with common ROS

GUI plugins can be started with following command:

 docker run -it --rm --net host \

--env ROS_MASTER_URI=http://DUCKIEBOT_IP:11311 \

--env ROS_IP=LAPTOP_IP \

--env="DISPLAY" \

--env="QT_X11_NO_MITSHM=1" \

--volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" \

duckietown/rpi-gui-tools

Packaged within this image are common ROS plugins which can be run on graphical envi-

ronments. A shell wrapper is also provided for convenience:

 start_gui_tools DUCKIEBOT_NAME rqt_image_view

8See https://wiki.ros.org/docker/Tutorials/GUI#The_safer_way for a more secure alternative.

93

http://DUCKIEBOT_NAME:8082/
http://DUCKIEBOT_NAME:8081/figures/image.jpg
https://wiki.ros.org/docker/Tutorials/GUI##The_safer_way

The above command opens a ROS shell that will connect to the DUCKIEBOT’s ROS master

node. To test the ROS connection works, run roswtf.

5.6.9. Remote control

The following container launches the joystick demo (USB joystick must be connected):

 docker -H DUCKIEBOT_NAME run --privileged --net host -v /data:/data \

duckietown/rpi-duckiebot-joystick-demo:master18

 duckiebot demo --demo_name joystick --duckiebot_name DUCKIEBOT_NAME

 duckiebot keyboard_control DUCKIEBOT_NAME

5.6.10. Camera calibration

The following container will launch the extrinsic calibration procedure:

 docker -H DUCKIEBOT_NAME run -it --privileged --net host -v /data:/data

duckietown/rpi-duckiebot-calibration:master18

Passing -v /data:/data is necessary so that all calibration settings will be preserved. When

placed on the calibration pattern, the following commands will initiate an interactive cali-

bration sequence for the camera.

 duckiebot calibrate_extrinsics DUCKIEBOT_NAME

 duckiebot calibrate_intrinsics DUCKIEBOT_NAME

5.6.11. Wheel calibration

To calibrate the gain and trim of the wheel motors, the following commands are needed:

 duckiebot demo --demo_name base --duckiebot_name DUCKIEBOT_NAME

94

 rosservice call /DUCKIEBOT_NAME/inverse_kinematics_node/set_gain --GAIN

 rosservice call /DUCKIEBOT_NAME/inverse_kinematics_node/set_trim --TRIM

5.6.12. Lane following

Once calibrated, the lane following demo can be launched as follows:

 docker -H DUCKIEBOT_NAME run -it --privileged --net host -v /data:/data

duckietown/rpi-duckiebot-lanefollowing-demo:master18

 duckiebot demo --demo_name lane_following --duckiebot_name DUCKIEBOT_NAME

5.7. Retrospective

One problem encountered during the development of Duckietown’s Docker infrastructure

was the matter of whether to store source code inside or outside the container (e.g. as

described in § 5.4.4). If stored externally, a developer can still load source code in a shared

volume and rebuild on container startup. Both approaches can produce reproducible artifacts

if properly versioned, but Docker images launch more quickly when images are fully prebuilt

and tend to be more inspectable with sources included.

Initially, we made the explicit decision to ship user source code directly inside the image.

As a consequence, any modifications to the source code would trigger a subsequent rebuild,

tying the sources and Docker image together. While including sources enables easier trou-

bleshooting and diagnostics, it also adds some friction during development, which caused

users to struggle with environment setup and Docker configuration issues.

The root cause of this friction was a product of imprecise versioning and over-automation.

As version tags were initially omitted, all images were pulled and built from the latest

commit on the mainline development branch. The auto-build feature of the CI server caused

upstream modifications to cascade to downstream images. Our short-term solution was to

disable auto-building, and push local builds to the server manually, however fixing it required

us to rethink the role of versioning and testing Docker builds in the CI toolchain.

95

Fig. 5.5. Early prototype of the Docker image hierarchy. Chaining unversioned autobuilds

without disciplined unit testing creates a potential domino effect which allows breaking

changes to propagate downstream, resulting in a cascade of silent failures.

Fig. 5.6. The AI Driving Olympics, a primary use case for the system described above.

96

https://www.duckietown.org/research/ai-driving-olympics

A more stable solution is to store all sources on the local development environment and

rebuild the image only when its upstream dependencies change. The image only contains its

compiled upstream dependencies and is only paired with source code at runtime.

One of the primary use cases for the Duckietown container infrastructure is a biannual

autonomous robotics competition called the AI Driving Olympics [Zilly et al., 2019] (AIDO).

To participate, competitors must submit a Docker image (various templates are provided for

reinforcement learning, imitation learning and classical robotics). The submitted image,

together with a Git repository and a commit hash, constitutes an AIDO submission. The

submission is retrieved by the organizers and evaluated on a random map in Duckietown’s

simulator [Chevalier-Boisvert et al., 2018]. This evaluation produces a numerical score in

several categories. Valid submissions may also be run on a physical robotarium. The highest

ranking submissions are evaluated in a final round at NeurIPS and ICRA.

5.7.1. Remarks on security

An unfortunate technical shortcoming of the Docker system is its reliance on superuser

privileges. While Docker takes a variety of preventative measures to ensure container in-

habitants cannot gain escalated privileges, numerous breakout attacks have been discov-

ered [Martin et al., 2018] in the wild. Any process which can circumvent container security

gains unfettered access to the host OS, making Docker especially unsuitable for deployment

on cloud, grid, and cluster computing environments.

Furthermore, Docker provides a mechanism to bypass its own security measures, allowing

container applications to run as if they were root processes on the host OS: the --privi

leged flag. This feature, alongside the fact that most Docker users are unqualified to audit

upstream images, which are liable to include packages of dubious provenance [Martin et al.,

2018], makes Docker particularly unsuitable for shared-computing environments.

Docker’s unnecessarily high privileges and susceptibility for misuse are serious issues.

While operator error may be partly at fault, these vulnerabilities are primarily the result

of poor implementation choices. Docker’s flagrant violation of the principle of least privi-

lege [Saltzer and Schroeder, 1975] effectively compromises the entire Linux security model.

To address these issues, various container platforms, including Shifter [Gerhardt et al.,

2017] and Singularity [Kurtzer et al., 2017], have emerged and gained traction in the scientific

97

https://github.com/duckietown/challenge-aido_LF-baseline-RL-sim-pytorch
https://github.com/duckietown/challenge-aido_LF-baseline-IL-logs-tensorflow
https://github.com/duckietown/challenge-aido_LF-template-ros
https://github.com/duckietown/gym-duckietown
https://docs.docker.com/engine/reference/run/#security-configuration
https://docs.docker.com/engine/reference/run/#security-configuration
https://docs.nersc.gov/programming/shifter/overview/
https://sylabs.io/docs/

computing community, owing to their lower privileges and compatibility with legacy Linux

distributions used by many academic computing environments. Since then, Docker has also

introduced a rootless mode, but it remains experimental at the time of writing this thesis.

5.8. Future work

Duckietown encourages users to train reinforcement learning models inside a driving sim-

ulator. As agents learn a policy to drive a Duckiebot, we envision it is similarly possible to

train an agent to perform tasks in the Docker environment. Agents, endowed with rudimen-

tary shell commands would receive a reward based on the exit code of some desired program

we wish to run. This can be extended to a fully automated environment, where the agent has

access to a virtual keyboard and mouse, and learns to configure a desktop environment to

run some desired program. Currently, this process involves a graduate student trying various

commands from StackOverflow. Ostensibly, the same result can be achieved by any stochas-

tic process which selects commands from a knowledge base and learns from past experience.

Early work in this domain is already being undertaken [Henkel et al., 2020], presumably by

a graduate student in a similar predicament.

5.9. Conclusion

In this chapter, we have taken a guided tour through the process of containerization and

demonstrated the effectiveness of containers for building reproducible robotics software – a

key step in the broader quest for experimental reproducibility. We propose a set of best

practices and lessons learned during the design, development and deployment of Docker con-

tainers for the Duckietown [Paull et al., 2017] platform. We also recommend a number of

tools and techniques for software reproducibility, a key component in the broader quest for

reproducible research. The author wishes to thank Rusi Hristov for his invaluable technical

assistance during the initial stages of this project and Florian Golemo for architectural plan-

ning and assistance. For more information about the Duckietown platform and reproducible

software development using Docker, please visit: https://docs.duckietown.org

98

https://engineering.docker.com/2019/02/experimenting-with-rootless-docker/
https://docs.duckietown.org

Chapter 6

Conclusion

“We are all shaped by the tools we use, in particular: the formalisms we use shape our

thinking habits, for better or for worse, and that means that we have to be very careful

in the choice of what we learn and teach, for unlearning is not really possible.”

–Edsger W. Dijkstra [2000], Answers to questions from students of Software Engineering

In this thesis, we explored four different programming tools from software engineering for

the development of intelligent systems, broadly addressing cognitive complexity arising in

four phases of Royce’s Waterfall method (Fig. 1.1). These tools have varying degrees of prac-

ticality, from highly theoretical (e.g. adversarial testing of differentiable programs Chapter 4)

to more pragmatic (e.g. containerization Chapter 5). In each chapter, we provide some mo-

tivating examples which demonstrate key deficiencies in state-of-the-art programming tools

for intelligent systems and propose viable solutions which address a few of those shortcom-

ings. While we hope that intelligent system programmers (e.g. roboticists and machine

learning practitioners) may derive some value from the tools themselves, our intention is to

be illustrative rather than prescriptive.

In building tools and validating their effectiveness on toy applications, it is our hope

that tool developers will carefully consider how software tools can introduce and mitigate

cognitive complexity. Well-designed tools can augment the cognitive capacity of humans

to reason about facts in the presence of uncertainty [Famelis et al., 2012], and provide er-

gonomic debugging and visualization assistance (e.g. Chapter 2). We also hope to convey

the importance of notational design. Good notation forces authors to think carefully about

their abstractions, makes logical errors conspicuous, and helps them to understand the im-

plications of early design choices. We hope that the programming tools presented in this

https://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1305.html

thesis will inspire developers to re-imagine the potential for computer-aided programming in

designing software for intelligent systems.

By complementing the cognitive abilities of human programmers – who excel at creative

problem solving and high-level abstract reasoning – with the raw symbolic processing abilities

of programming tools, we can accelerate the design (Chapter 2), development (Chapter 3,

validation (Chapter 4) and deployment (Chapter 5) of intelligent systems in real-world appli-

cations. This process is a virtuous cycle which deserves domain-specific tools and practices

due to the opportunities which intelligent systems afford and the unique interplay between

human and machine intelligence. As we begin to develop autonomous systems which play in-

creasingly active roles in society, both software engineers and machine learning practitioners

must play a similarly active role in shaping the behavior of those systems.

Software engineers have a number of lessons to learn from intelligent systems. Language

designers would do well to consider the value of smart developer tools (Chapter 2) in facil-

itating the dialogue between human and machine intelligence. Languages should strive to

incorporate human knowledge via differentiable programming and expert systems, to help

reason about compositionality and denotational correctness (Chapter 3). Automated test-

ing via simulators and property testing frameworks is needed to reason about operational

correctness without exhaustive specification (Chapter 4). Finally, continuous integration,

automated testing and best practices in developer operations (Chapter 5) are needed to

ensure reproducible artifacts in the presence of software and hardware variability.

Machine learning practitioners also have a number of lessons to learn from software en-

gineering. Traditional software engineering prescribes a rigorous process model and testing

methodology (Fig. 1.1) which has guided many generations of software projects. To become

a true engineering discipline, machine learning will need a more systematic approach to

building autonomous systems. Machine learning models are trained on objective functions,

which are typically low-dimensional functions measuring the performance of a system, re-

turning a scalar value known as an error or loss. In practice, intelligent systems must satisfy

a multiobjective set of criteria [Censi, 2015], including energy efficiency [Paull et al., 2010],

memory [Mitliagkas et al., 2013], re/usability [Breuleux and van Merriënboer, 2017, Deleu

et al., 2019], predictability [Turner and Neal, 2017], latency [Ravanelli et al., 2018], robust-

ness [Pineau et al., 2003], reproducibility [Pineau et al., 2020], explainability [Turner, 2016],

100

traceability [Guo et al., 2017, Tsirigotis et al., 2018], uncertainty [Diaz Cabrera, 2018], sim-

plicity [Kastner et al., 2019], trustworthiness [Xu, 2017], transferability [Mehta et al., 2019],

scalability [Luan et al., 2019] and many other factors.

In traditional software engineering, it is reasonable to assume those implementing a

new system have some implicit domain knowledge and are well-intentioned human beings

working towards a common goal. Given a coarse description, they can fill in the blanks.

When building an intelligent system, we would be safer to assume the requirements are

implemented by a genie. Given some data and an optimization metric, it will take every

available shortcut to grant our wishes. If we are not careful about stating our requirements,

this entity will produce a solution that simply does not work (in the best case), or appears

to work but is truly cursed [Bellman, 1957].

When building an intelligent system, developers must carefully ask, “What is the desired

behavior of the system we are designing?” This question is often very troublesome, for our

approximate requirements must be translated into precise constraints on the solution space.

For example, when designing a self-driving vehicle, we must clearly optimize for passenger

safety, however doing so naïvely will train a vehicle that never moves, or always yields to

passing vehicles. Short of exhaustive specification, how can we be assured the resulting

system satisfies our requirements? Most humans are capable of safely driving a vehicle, but

even the best engineers are hard-pressed when asked to write a driving algorithm. Labeling

the data by hand is too expensive. Formal verification is right out the window.

Type systems, compilers and fuzzers are all part of a broader class of validation and

verification tools. The goal of these tools is to trade cognitive complexity for computational

complexity. Some errors (e.g. syntactical errors), are minor nuisances and can be detected

with a good incremental parser (§ 2.3.2). Others, as shown in Fig. 6.1, have higher cognitive

complexity but can be detected by spending computation. We argue this computational

cost is often justified as computation is cheap and bugs can have catastrophic consequences.

Studies show the earlier bugs are detected, the more likely they are to be fixed [Distefano

et al., 2019] – saving minutes in development could save lives during operation. Spending

computation also frees up valuable cognitive resources for other tasks.

101

Fig. 6.1. Complexity of detecting various types of programming errors.

Fuzz testing remains an economically and computationally efficient alternative to formal

verification. As shown in § 4.2, we can detect more severe errors with a lower fiscal and com-

putational budget by making some practical assumptions about the model and oracle. As

today’s engineers begin to add learning capabilities to tomorrow’s safety-critical robotic sys-

tems, we believe the increased assurance intelligent validation and verification tools provide

will be indispensable for scaling up these complex adaptive cyberphysical systems.

Much work remains for the interested reader. A great deal of work in machine learning is

designing representations which are suitable for downstream tasks and loss functions which

accurately measure performance on those tasks. Building representations and loss functions

which capture the full range of objectives can be a painstaking process to debug. We encour-

age engineers to think carefully the process of debugging machine learning models and how

we can accelerate the lifecycle, from data mining and analysis to evaluation and deployment.

Machine learning researchers would do well to consider the value of denotational seman-

tics for grounding and reasoning about specifications. While type-theoretic verification tools

are currently limited to simple properties, their abstractions are very powerful. Whether

type systems or expert systems, computer aided reasoning tools will play an important role

in the development of safe intelligent systems. We encourage the reader to look carefully

at the value these systems provide, and when they are unsuitable, consider using property

checking techniques and continuous integration methods for ensuring functional correctness.

102

Intelligent

Systems

Programming

Languages

Developer Tools

Thesis

Fig. 6.2. Many interesting applications lie at the intersection of these three fields.

6.1. Contributions

There are many interesting codesign problems at the intersection of tools, languages and

systems (Fig. 6.2). In this work, we consider the theory and implementation of programming

tools for intelligent systems. The opposite direction is also an intriguing subject, but remains

outside the scope of this thesis. Language designers have recently begun to explore the mean-

ing of “toolable” languages and tooling-enhanced languages [Chatley et al., 2019]. Research

in language oriented programming [Dmitriev, 2004] and model-driven engineering [Famelis

et al., 2015] has also considered tools for API and PL designers. Software engineers have

studied a number of tools for intelligent systems including notebooks [Chattopadhyay et al.],

REPLs and interactive programming environments. Finally, languages and intelligent sys-

tems have enjoyed a fruitful collaboration in differentiable and probabilistic programming

(§ 3.2). Each of these would be an interesting thesis in its own right.

Our contributions in this particular thesis are fourfold. In Chapter 2, we introduce a

new plugin for the IntelliJ Platform, an integrated development environment with support

for the Robot Operating System. In addition to applications-driven frameworks like ROS,

several domain specific languages for intelligent systems have recently emerged (§ 3.2). In

103

Chapter 3 we introduce one more, an embedded DSL in the Kotlin language allowing users

to write shape-safe differentiable programs in a mathematically idiomatic notation.

Reproducibility is a broad challenge in intelligent systems design, requiring a multi-

pronged solution. We believe testing and validation of intelligent systems will play an

important role in safety-critical applications. Automated testing and simulation, as well

reproducible build and deployment tools will be essential for robustness. In Chapter 4,

we introduce a general purpose property-based testing algorithm and empirically show an

improvement in data efficiency by detecting a greater proportion of errors in a fixed computa-

tional budget. Finally, in Chapter 5, we present a fully-containerized build environment and

continuous integration workflow, improving the re/usability and re/producibility of software

applications on the Duckietown platform. Together, these contributions help to alleviate

cognitive complexity when designing, developing, testing and deploying intelligent systems.

104

References

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kud-

lur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,

Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang

Zheng. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and Implementation, OSDI’16, pages

265–283, Berkeley, CA, USA, 2016. USENIX Association. ISBN 978-1-931971-33-1. URL

https://dl.acm.org/citation.cfm?id=3026877.3026899.

Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. Dependency solving:

a separate concern in component evolution management. Journal of Systems and Software,

85(10):2228–2240, 2012.

Peter Abeles. Efficient Java Matrix Library, 2010. URL http://ejml.org/.

Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer Programs.

MIT Press, Cambridge, MA, USA, 2nd edition, 1996. ISBN 0262011530.

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël

Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, and Jonathan

Ragan-Kelley. Learning to optimize Halide with tree search and random programs. ACM

Trans. Graph., 38(4):121:1–121:12, July 2019. ISSN 0730-0301. doi: 10.1145/3306346.

3322967. URL https://doi.acm.org/10.1145/3306346.3322967.

Ashish Agarwal. Static automatic batching in TensorFlow. In Kamalika Chaudhuri and Rus-

lan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine

Learning, volume 97 of Proceedings of Machine Learning Research, pages 92–101, Long

Beach, California, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/

agarwal19a.html.

https://dl.acm.org/citation.cfm?id = 3026877.3026899
http://ejml.org/
https://doi.acm.org/10.1145/3306346.3322967
http://proceedings.mlr.press/v97/agarwal19a.html
http://proceedings.mlr.press/v97/agarwal19a.html

Akshay Agrawal, Akshay Naresh Modi, Alexandre Passos, Allen Lavoie, Ashish Agarwal,

Asim Shankar, Igor Ganichev, Josh Levenberg, Mingsheng Hong, Rajat Monga, and Shan-

qing Cai. TensorFlow Eager: A multi-stage, Python-embedded DSL for machine learning.

In Proceedings of the 2nd SysML Conference, 2019. URL https://www.sysml.cc/doc/2019/

88.pdf.

Isabela Albuquerque, Joao Monteiro, Thang Doan, Breandan Considine, Tiago Falk, and

Ioannis Mitliagkas. Multi-objective training of Generative Adversarial Networks with

multiple discriminators. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,

Proceedings of the 36th International Conference on Machine Learning, volume 97 of

Proceedings of Machine Learning Research, pages 202–211, Long Beach, California, USA,

09–15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/albuquerque19a.html.

Mohammed AlQuraishi. End-to-end differentiable learning of protein structure. bioRxiv,

2018. doi: 10.1101/265231. URL https://www.biorxiv.org/content/early/2018/08/29/

265231.

Mario Alvarez-Picallo and C.-H. Luke Ong. Change actions: Models of generalised differen-

tiation. volume abs/1902.05465, 2019. URL https://arxiv.org/abs/1902.05465.

Mario Alvarez-Picallo, Alex Eyers-Taylor, Michael Peyton Jones, and C.-H. Luke Ong. Fixing

incremental computation: Derivatives of fixpoints, and the recursive semantics of Datalog.

volume abs/1811.06069, 2018. URL https://arxiv.org/abs/1811.06069.

Nada Amin and Ross Tate. Java and Scala’s type systems are unsound: The existential crisis

of null pointers. In Proceedings of the 2016 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016,

pages 838–848, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4444-9. doi: 10.1145/

2983990.2984004. URL https://doi.acm.org/10.1145/2983990.2984004.

Antolino Andrea and Luc Maisonobe. Automatic differentiation for propagation

of orbit uncertainties on Orekit. 2016. URL https://www.orekit.org/doc/

Antolino-2016-automatic-diff-for-prop-of-orbit-uncertainties.pdf.

Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in Java. Cambridge

University Press, USA, 2nd edition, 2003. ISBN 052182060X.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative Adversar-

ial Networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th

106

https://www.sysml.cc/doc/2019/88.pdf
https://www.sysml.cc/doc/2019/88.pdf
http://proceedings.mlr.press/v97/albuquerque19a.html
https://www.biorxiv.org/content/early/2018/08/29/265231
https://www.biorxiv.org/content/early/2018/08/29/265231
https://arxiv.org/abs/1902.05465
https://arxiv.org/abs/1811.06069
https://doi.acm.org/10.1145/2983990.2984004
https://www.orekit.org/doc/Antolino-2016-automatic-diff-for-prop-of-orbit-uncertainties.pdf
https://www.orekit.org/doc/Antolino-2016-automatic-diff-for-prop-of-orbit-uncertainties.pdf

International Conference on Machine Learning, volume 70 of Proceedings of Machine

Learning Research, pages 214–223, International Convention Centre, Sydney, Australia,

06–11 Aug 2017. PMLR. URL http://proceedings.mlr.press/v70/arjovsky17a.html.

John Backus. Can Programming Be Liberated from the Von Neumann Style?: A Functional

Style and Its Algebra of Programs, volume 21. ACM, New York, NY, USA, August 1978.

doi: 10.1145/359576.359579. URL https://doi.acm.org/10.1145/359576.359579.

Junjie Bai, Fang Lu, Ke Zhang, et al. ONNX: Open Neural Network Exchange, 2019. URL

https://github.com/onnx/onnx.

A. G. Baydin and B. A. Pearlmutter. Automatic differentiation of algorithms for machine

learning. In Proceedings of the AutoML Workshop at the International Conference on

Machine Learning (ICML), Beijing, China, June 21–26, 2014, 2014. URL https://arxiv.

org/abs/1404.7456.

Atılım Güneş Baydin. Differentiable programming. URL https://www.cs.nuim.ie/~gunes/

files/Baydin-MSR-Slides-20160201.pdf.

Atilim Gunes Baydin, Barak A. Pearlmutter, and Alexey Andreyevich Radul. Automatic

differentiation in machine learning: a survey. CoRR, abs/1502.05767, 2015a. URL https:

//arxiv.org/abs/1502.05767.

Atilim Gunes Baydin, Barak A. Pearlmutter, and Jeffrey Mark Siskind. DiffSharp: Auto-

matic differentiation library. CoRR, abs/1511.07727, 2015b. URL https://arxiv.org/abs/

1511.07727.

Fabrice Bellard. QEMU, a fast and portable dynamic translator. In USENIX Annual

Technical Conference, FREENIX Track, volume 41, page 46, 2005.

R. E. Bellman, H. Kagiwada, and R. E. Kalaba. Wengert’s numerical method for partial

derivatives, orbit determination and quasilinearization. Commun. ACM, 8(4):231–232,

April 1965. ISSN 0001-0782. doi: 10.1145/363831.364886. URL https://doi.acm.org/10.

1145/363831.364886.

Richard Bellman. Dynamic Programming. Princeton, NJ, USA, 1957. URL https://www.

gwern.net/docs/statistics/decision/1957-bellman-dynamicprogramming.pdf.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient

descent is difficult. Trans. Neur. Netw., 5(2):157–166, March 1994. ISSN 1045-9227. doi:

10.1109/72.279181. URL https://doi.org/10.1109/72.279181.

107

http://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.acm.org/10.1145/359576.359579
https://github.com/onnx/onnx
https://arxiv.org/abs/1404.7456
https://arxiv.org/abs/1404.7456
https://www.cs.nuim.ie/~gunes/files/Baydin-MSR-Slides-20160201.pdf
https://www.cs.nuim.ie/~gunes/files/Baydin-MSR-Slides-20160201.pdf
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1511.07727
https://arxiv.org/abs/1511.07727
https://doi.acm.org/10.1145/363831.364886
https://doi.acm.org/10.1145/363831.364886
https://www.gwern.net/docs/statistics/decision/1957-bellman-dynamicprogramming.pdf
https://www.gwern.net/docs/statistics/decision/1957-bellman-dynamicprogramming.pdf
https://doi.org/10.1109/72.279181

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, et al. Theano: a CPU

and GPU math expression compiler. In Proceedings of the Python for scientific computing

conference (SciPy), volume 4. Austin, TX, 2010. URL http://deeplearning.net/software/

theano/.

G. Berry and R. Sethi. From regular expressions to deterministic automata. Theor. Comput.

Sci., 48(1):117–126, December 1986. ISSN 0304-3975. URL https://dl.acm.org/citation.

cfm?id=39528.39537.

Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding TypeScript. In

European Conference on Object-Oriented Programming, pages 257–281. Springer, 2014.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,

Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman.

Pyro: Deep universal probabilistic programming. Journal of Machine Learning Research,

20(28):1–6, 2019. URL http://jmlr.org/papers/v20/18-403.html.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable

sorting and ranking, 2020. URL https://arxiv.org/pdf/2002.08871.pdf.

Richard F Blute, J Robin B Cockett, and Robert AG Seely. Differential categories.

Mathematical structures in computer science, 16(6):1049–1083, 2006.

Richard F Blute, J Robin B Cockett, and Robert AG Seely. Cartesian differential categories.

Theory and Applications of Categories, 22(23):622–672, 2009.

Yang Bo. DeepLearning.scala: A simple library for creating complex neural networks. 2018.

URL https://github.com/ThoughtWorksInc/DeepLearning.scala.

Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal

Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor Sampedro, Kurt Konolige, Sergey

Levine, and Vincent Vanhoucke. Using simulation and domain adaptation to improve

efficiency of deep robotic grasping. 2018. URL https://arxiv.org/abs/1709.07857.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable about arrays?

In E. Allen Emerson and Kedar S. Namjoshi, editors, Verification, Model Checking, and

Abstract Interpretation, pages 427–442, Berlin, Heidelberg, 2006. Springer Berlin Heidel-

berg. ISBN 978-3-540-31622-0. URL http://theory.stanford.edu/~arbrad/papers/arrays.

pdf.

108

http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
https://dl.acm.org/citation.cfm?id = 39528.39537
https://dl.acm.org/citation.cfm?id = 39528.39537
http://jmlr.org/papers/v20/18-403.html
https://arxiv.org/pdf/2002.08871.pdf
https://github.com/ThoughtWorksInc/DeepLearning.scala
https://arxiv.org/abs/1709.07857
http://theory.stanford.edu/~arbrad/papers/arrays.pdf
http://theory.stanford.edu/~arbrad/papers/arrays.pdf

Mikio L Braun, Johannes Schaback, Matthias L Jugel, Nicolas Oury, et al. jBlas: Linear

algebra for Java, 2011. URL http://jblas.org/.

Olivier Breuleux and Bart van Merriënboer. Automatic differentiation in myia. 2017. URL

https://github.com/mila-udem/myia.

Aloïs Brunel, Damiano Mazza, and Michele Pagani. Backpropagation in the Simply Typed

Lambda-calculus with Linear negation. 2020. URL https://arxiv.org/abs/1909.13768.

Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, October

1964. ISSN 0004-5411. doi: 10.1145/321239.321249. URL https://doi.acm.org/10.1145/

321239.321249.

Roman V Buniy, Stephen DH Hsu, and Anthony Zee. Is Hilbert space discrete? Physics

Letters B, 630(1-2):68–72, 2005. URL https://doi.org/10.1016/j.physletb.2005.09.084.

Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Ostermann. A theory of

changes for higher-order languages: Incrementalizing λ-calculi by static differentiation.

In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’14, pages 145–155, New York, NY, USA, 2014. ACM. ISBN

978-1-4503-2784-8. doi: 10.1145/2594291.2594304. URL https://doi.acm.org/10.1145/

2594291.2594304.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial

intelligence, 134(1-2):57–83, 2002. URL https://core.ac.uk/download/pdf/82416379.pdf.

Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C. Mitchell.

F-bounded polymorphism for object-oriented programming. In Proceedings of the

Fourth International Conference on Functional Programming Languages and Computer

Architecture, FPCA ’89, pages 273–280, New York, NY, USA, 1989. ACM. ISBN 0-89791-

328-0. doi: 10.1145/99370.99392. URL https://doi.acm.org/10.1145/99370.99392.

Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An extension of System

F with subtyping. volume 109, pages 4–56, Duluth, MN, USA, February 1994. Academic

Press, Inc. doi: 10.1006/inco.1994.1013. URL https://dx.doi.org/10.1006/inco.1994.1013.

Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot. Partial derivatives of an

extended regular expression. pages 179–191, 2011.

109

http://jblas.org/
https://github.com/mila-udem/myia
https://arxiv.org/abs/1909.13768
https://doi.acm.org/10.1145/321239.321249
https://doi.acm.org/10.1145/321239.321249
https://doi.org/10.1016/j.physletb.2005.09.084
https://doi.acm.org/10.1145/2594291.2594304
https://doi.acm.org/10.1145/2594291.2594304
https://core.ac.uk/download/pdf/82416379.pdf
https://doi.acm.org/10.1145/99370.99392
https://dx.doi.org/10.1006/inco.1994.1013

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael

Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A prob-

abilistic programming language. Journal of Statistical Software, 76(1), 1 2017. doi:

10.18637/jss.v076.i01. URL https://www.osti.gov/servlets/purl/1430202.

Andrea Censi. A mathematical theory of co-design. arXiv preprint arXiv:1512.08055, 2015.

URL https://arxiv.org/pdf/1512.08055.pdf.

J-M Champarnaud, J-L Ponty, and Djelloul Ziadi. From regular expressions to finite au-

tomata. International journal of computer mathematics, 72(4):415–431, 1999. URL

https://doi.org/10.1080/00207169908804865.

Kartik Chandra, Erik Meijer, Samantha Andow, Emilio Arroyo-Fang, Irene Dea, Johann

George, Melissa Grueter, Basil Hosmer, Steffi Stumpos, Alanna Tempest, and Shannon

Yang. Gradient descent: The ultimate optimizer, 2019. URL https://arxiv.org/pdf/1909.

13371.pdf.

Émilie Charlier, Narad Rampersad, and Jeffrey Shallit. Enumeration and decidable prop-

erties of automatic sequences. Lecture Notes in Computer Science, page 165179, 2011.

ISSN 1611-3349. doi: 10.1007/978-3-642-22321-1_15. URL https://dx.doi.org/10.1007/

978-3-642-22321-1_15.

Robert Chatley, Alastair Donaldson, and Alan Mycroft. The next 7000 programming

languages. In Computing and Software Science, pages 250–282. Springer, 2019. URL

https://link.springer.com/chapter/10.1007/978-3-319-91908-9_15.

Souti Chattopadhyay, Ishita Prasad, Austin Z Henley, Anita Sarma, and Titus Barik. Whats

wrong with computational notebooks? pain points, needs, and design opportunities. URL

http://web.eecs.utk.edu/~azh/pubs/Chattopadhyay2020CHI_NotebookPainpoints.pdf.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen,

Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Kr-

ishnamurthy. TVM: An automated end-to-end optimizing compiler for deep learning. In

13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18),

pages 578–594, Carlsbad, CA, 2018. USENIX Association. ISBN 978-1-931971-47-8. URL

https://www.usenix.org/conference/osdi18/presentation/chen.

Tongfei Chen. Typesafe abstractions for tensor operations (short paper). pages 45–50, 2017.

doi: 10.1145/3136000.3136001. URL https://doi.acm.org/10.1145/3136000.3136001.

110

https://www.osti.gov/servlets/purl/1430202
https://arxiv.org/pdf/1512.08055.pdf
https://doi.org/10.1080/00207169908804865
https://arxiv.org/pdf/1909.13371.pdf
https://arxiv.org/pdf/1909.13371.pdf
https://dx.doi.org/10.1007/978-3-642-22321-1_15
https://dx.doi.org/10.1007/978-3-642-22321-1_15
https://link.springer.com/chapter/10.1007/978-3-319-91908-9_15
http://web.eecs.utk.edu/~azh/pubs/Chattopadhyay2020CHI_NotebookPainpoints.pdf
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.acm.org/10.1145/3136000.3136001

Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. Metamorphic testing: a new approach

for generating next test cases. Technical report, Department of Computer Science, Hong

Kong, 1998. URL https://www.cse.ust.hk/~scc/publ/CS98-01-metamorphictesting.pdf.

Yan Chen, Joshua Dunfield, and Umut A. Acar. Type-directed automatic incrementalization.

pages 299–310, 2012. doi: 10.1145/2254064.2254100. URL https://doi.acm.org/10.1145/

2254064.2254100.

Maxime Chevalier-Boisvert, Florian Golemo, Yanjun Cao, Bhairav Mehta, and Liam

Paull. Duckietown environments for OpenAI Gym. https://github.com/duckietown/

gym-duckietown, 2018.

Bruce Christianson. A Leibniz notation for automatic differentiation. In Shaun Forth,

Paul Hovland, Eric Phipps, Jean Utke, and Andrea Walther, editors, Recent Advances

in Algorithmic Differentiation, volume 87 of Lecture Notes in Computational Science

and Engineering, pages 1–9. Springer, Berlin, 2012. ISBN 978-3-540-68935-5. doi: 10.

1007/978-3-642-30023-3_1. URL https://uhra.herts.ac.uk/bitstream/handle/2299/8933/

904722.pdf.

Alonzo Church. The Calculi of Lambda-conversion. Annals of Mathematics Studies. Prince-

ton University Press, 1941. ISBN 9780691083940. URL https://books.google.ca/books?

id=yWCYDwAAQBAJ.

Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing of

Haskell programs. pages 268–279, 2000. doi: 10.1145/351240.351266. URL https://doi.

acm.org/10.1145/351240.351266.

James Clift and Daniel Murfet. Derivatives of Turing machines in Linear Logic. arXiv

preprint arXiv:1805.11813, 2018. URL https://arxiv.org/abs/1805.11813.

Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a modular machine learning

software library. Idiap-RR Idiap-RR-46-2002, IDIAP, 2002.

George F Corliss and Andreas Griewank. Operator overloading as an enabling technology

for automatic differentiation. Technical report, Argonne National Laboratory, 1993. URL

http://softlib.rice.edu/pub/CRPC-TRs/reports/CRPC-TR93431.pdf.

Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. Assessing the bus factor

of Git repositories. In 2015 IEEE 22nd International Conference on Software Analysis,

Evolution, and Reengineering (SANER), pages 499–503. IEEE, 2015. URL https://hal.

111

https://www.cse.ust.hk/~scc/publ/CS98-01-metamorphictesting.pdf
https://doi.acm.org/10.1145/2254064.2254100
https://doi.acm.org/10.1145/2254064.2254100
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://uhra.herts.ac.uk/bitstream/handle/2299/8933/904722.pdf
https://uhra.herts.ac.uk/bitstream/handle/2299/8933/904722.pdf
https://books.google.ca/books?id = yWCYDwAAQBAJ
https://books.google.ca/books?id = yWCYDwAAQBAJ
https://doi.acm.org/10.1145/351240.351266
https://doi.acm.org/10.1145/351240.351266
https://arxiv.org/abs/1805.11813
http://softlib.rice.edu/pub/CRPC-TRs/reports/CRPC-TR93431.pdf
https://hal.inria.fr/hal-01257471/document
https://hal.inria.fr/hal-01257471/document

inria.fr/hal-01257471/document.

Sébastien Crozet et al. nalgebra: a linear algebra library for Rust, 2019. URL https:

//nalgebra.org.

H.B. Curry and R. Feys. Combinatory Logic. Number v. 1 in Combinatory Logic.

North-Holland Publishing Company, 1958. URL https://books.google.ca/books?id=

fEnuAAAAMAAJ.

Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable rank-

ing and sorting using optimal transport. In Advances in Neural Information

Processing Systems, pages 6858–6868, 2019. URL https://papers.nips.cc/paper/

8910-differentiable-ranking-and-sorting-using-optimal-transport.pdf.

Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandiwalla, Jayaram Bobba, Matthew

Brookhart, Avijit Chakraborty, William Constable, Christian Convey, Leona Cook, Omar

Kanawi, Robert Kimball, Jason Knight, Nikolay Korovaiko, Varun Kumar Vijay, Yix-

ing Lao, Christopher R. Lishka, Jaikrishnan Menon, Jennifer Myers, Sandeep Aswath

Narayana, Adam Procter, and Tristan J. Webb. Intel nGraph: An intermediate repre-

sentation, compiler, and executor for deep learning. CoRR, abs/1801.08058, 2018. URL

https://arxiv.org/abs/1801.08058.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico

Kolter. End-to-end differentiable physics for learning and control. In Advances in Neural

Information Processing Systems, pages 7178–7189, 2018.

Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis Wyffels. A differentiable physics

engine for deep learning in robotics. CoRR, abs/1611.01652, 2016. URL https://arxiv.

org/abs/1611.01652.

T. J. Dekker. A floating-point technique for extending the available precision. Numer.

Math., 18(3):224–242, June 1971. ISSN 0029-599X. doi: 10.1007/BF01397083. URL

https://dx.doi.org/10.1007/BF01397083.

Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, and Yoshua Bengio.

Torchmeta: A meta-learning library for PyTorch, 2019. URL https://arxiv.org/pdf/1909.

06576.pdf.

Commons Math Developers. Apache Commons Math. Forest Hill, MD, USA: The Apache

Software Foundation, 2012. URL https://commons.apache.org/proper/commons-math/.

112

https://hal.inria.fr/hal-01257471/document
https://nalgebra.org
https://nalgebra.org
https://books.google.ca/books?id = fEnuAAAAMAAJ
https://books.google.ca/books?id = fEnuAAAAMAAJ
https://papers.nips.cc/paper/8910-differentiable-ranking-and-sorting-using-optimal-transport.pdf
https://papers.nips.cc/paper/8910-differentiable-ranking-and-sorting-using-optimal-transport.pdf
https://arxiv.org/abs/1801.08058
https://arxiv.org/abs/1611.01652
https://arxiv.org/abs/1611.01652
https://dx.doi.org/10.1007/BF01397083
https://arxiv.org/pdf/1909.06576.pdf
https://arxiv.org/pdf/1909.06576.pdf
https://commons.apache.org/proper/commons-math/

Manfred Ramon Diaz Cabrera. Interactive and Uncertainty-aware Imitation Learning:

Theory and Applications. PhD thesis, Concordia University, 2018. URL https://spectrum.

library.concordia.ca/984373/1/Diaz_MSc_F2018.pdf.

Edsger W Dijkstra. Answers to questions from students of software engineering. Circulated

privately, 2000. URL http://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1305.PDF.

Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. Scaling

static analyses at Facebook. Commun. ACM, 62(8):62–70, July 2019. ISSN 0001-0782.

doi: 10.1145/3338112. URL https://doi.acm.org/10.1145/3338112.

Sergey Dmitriev. Language oriented programming: The next programming paradigm.

JetBrains onBoard, 1(2):1–13, 2004. URL http://www.onboard.jetbrains.com/is1/

articles/04/10/lop/mps.pdf.

Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis. In ICLR,

2019. URL https://github.com/chrisdonahue/wavegan.

Stuart E Dreyfus. Artificial neural networks, back propagation, and the Kelley-Bryson

gradient procedure. Journal of guidance, control, and dynamics, 13(5):926–928, 1990.

URL https://arc.aiaa.org/doi/abs/10.2514/3.25422.

Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Jianjun Zhao, and Yang Liu. Deepcruiser: Au-

tomated guided testing for stateful deep learning systems. CoRR, abs/1812.05339, 2018.

URL https://arxiv.org/abs/1812.05339.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning.

arXiv preprint arXiv:1603.07285, 2016. URL https://arxiv.org/abs/1603.07285.

Paul S Dwyer, MS MacPhail, et al. Symbolic matrix derivatives. The annals of mathematical

statistics, 19(4):517–534, 1948. URL https://www.jstor.org/stable/2236019.

A. Edalat and A. Lieutier. Domain theory and differential calculus (functions of one variable).

In Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pages 277–

286, July 2002. doi: 10.1109/LICS.2002.1029836.

Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and an-

tiderivatives. CoRR, abs/1606.01642, 2016. URL https://arxiv.org/abs/1606.01642.

Thomas Ehrhard and Laurent Regnier. The differential λ-calculus. Theor. Comput. Sci., 309

(1):1–41, December 2003. ISSN 0304-3975. doi: 10.1016/S0304-3975(03)00392-X. URL

https://dx.doi.org/10.1016/S0304-3975(03)00392-X.

113

https://spectrum.library.concordia.ca/984373/1/Diaz_MSc_F2018.pdf
https://spectrum.library.concordia.ca/984373/1/Diaz_MSc_F2018.pdf
http://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1305.PDF
https://doi.acm.org/10.1145/3338112
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/mps.pdf
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/mps.pdf
https://github.com/chrisdonahue/wavegan
https://arc.aiaa.org/doi/abs/10.2514/3.25422
https://arxiv.org/abs/1812.05339
https://arxiv.org/abs/1603.07285
https://www.jstor.org/stable/2236019
https://arxiv.org/abs/1606.01642
https://dx.doi.org/10.1016/S0304-3975(03)00392-X

Conal Elliott. The simple essence of automatic differentiation. Proc. ACM Program. Lang.,

2(ICFP):70:1–70:29, July 2018. ISSN 2475-1421. doi: 10.1145/3236765. URL https:

//doi.acm.org/10.1145/3236765.

Conal Elliott, Sigbjørn Finne, and Oege De Moor. Compiling embedded languages. Journal

of Functional Programming, 13(2), 2003. URL http://conal.net/papers/jfp-saig/.

Conal M. Elliott. Beautiful differentiation. In Proceedings of the 14th ACM SIGPLAN

International Conference on Functional Programming, ICFP ’09, pages 191–202, New

York, NY, USA, 2009. ACM. ISBN 978-1-60558-332-7. doi: 10.1145/1596550.1596579.

URL https://doi.acm.org/10.1145/1596550.1596579.

Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools for model-based

robotics: Comparison of bullet, havok, mujoco, ode and physx. In 2015 IEEE

international conference on robotics and automation (ICRA), pages 4397–4404.

IEEE, 2015. URL https://www.researchgate.net/profile/Yuval_Tassa/publication/

280944465_Simulation_tools_for_model-based_robotics_Comparison_of_Bullet_

Havok_MuJoCo_ODE_and_PhysX/links/55cdd4bb08aee19936f8078c.pdf.

Moritz Eysholdt and Heiko Behrens. Xtext: Implement your language faster than the quick

and dirty way. In Proceedings of the ACM International Conference Companion on Object

Oriented Programming Systems Languages and Applications Companion, OOPSLA ’10,

pages 307–309, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0240-1. doi: 10.1145/

1869542.1869625. URL https://doi.acm.org/10.1145/1869542.1869625.

Michais Famelis, Rick Salay, and Marsha Chechik. Partial models: Towards modeling and

reasoning with uncertainty. In 2012 34th International Conference on Software Engineering

(ICSE), pages 573–583. IEEE, 2012. URL http://www.cs.toronto.edu/~famelis/icse12.pdf.

Michalis Famelis, Naama Ben-David, Alessio Di Sandro, Rick Salay, and Marsha Chechik.

Mu-Mmint: An IDE for model uncertainty. In Proceedings of the 37th International

Conference on Software Engineering - Volume 2, ICSE ’15, pages 697–700, Piscataway,

NJ, USA, 2015. IEEE Press. URL https://dl.acm.org/citation.cfm?id=2819009.2819141.

George Fink and Matt Bishop. Property-based testing: A new approach to testing for

assurance. SIGSOFT Softw. Eng. Notes, 22(4):74–80, July 1997. ISSN 0163-5948. doi:

10.1145/263244.263267. URL https://doi.acm.org/10.1145/263244.263267.

114

https://doi.acm.org/10.1145/3236765
https://doi.acm.org/10.1145/3236765
http://conal.net/papers/jfp-saig/
https://doi.acm.org/10.1145/1596550.1596579
https://www.researchgate.net/profile/Yuval_Tassa/publication/280944465_Simulation_tools_for_model-based_robotics_Comparison_of_Bullet_Havok_MuJoCo_ODE_and_PhysX/links/55cdd4bb08aee19936f8078c.pdf
https://www.researchgate.net/profile/Yuval_Tassa/publication/280944465_Simulation_tools_for_model-based_robotics_Comparison_of_Bullet_Havok_MuJoCo_ODE_and_PhysX/links/55cdd4bb08aee19936f8078c.pdf
https://www.researchgate.net/profile/Yuval_Tassa/publication/280944465_Simulation_tools_for_model-based_robotics_Comparison_of_Bullet_Havok_MuJoCo_ODE_and_PhysX/links/55cdd4bb08aee19936f8078c.pdf
https://doi.acm.org/10.1145/1869542.1869625
http://www.cs.toronto.edu/~famelis/icse12.pdf
https://dl.acm.org/citation.cfm?id = 2819009.2819141
https://doi.acm.org/10.1145/263244.263267

Bryan Ford. Parsing Expression Grammars: A recognition-based syntactic founda-

tion. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’04, pages 111–122, New York, NY, USA, 2004. ACM.

ISBN 1-58113-729-X. doi: 10.1145/964001.964011. URL https://doi.acm.org/10.1145/

964001.964011.

M. Fowler. Fluent interface, 2005. URL http://martinfowler.com/bliki/FluentInterface.html.

Zheng Gao, Christian Bird, and Earl T. Barr. To type or not to type: Quantifying detectable

bugs in JavaScript. In Proceedings of the 39th International Conference on Software

Engineering, ICSE ’17, pages 758–769, Piscataway, NJ, USA, 2017. IEEE Press. ISBN 978-

1-5386-3868-2. doi: 10.1109/ICSE.2017.75. URL https://doi.org/10.1109/ICSE.2017.75.

Lisa Gerhardt, Wahid Bhimji, Shane Canon, Markus Fasel, Doug Jacobsen, Mustafa

Mustafa, Jeff Porter, and Vakho Tsulaia. Shifter: Containers for HPC. Journal of Physics:

Conference Series, 898:082021, oct 2017. doi: 10.1088/1742-6596/898/8/082021. URL

https://doi.org/10.1088%2F1742-6596%2F898%2F8%2F082021.

Carlo Ghezzi and Dino Mandrioli. Incremental parsing. ACM Trans. Program. Lang. Syst.,

1(1):58–70, January 1979. ISSN 0164-0925. doi: 10.1145/357062.357066. URL https:

//doi.acm.org/10.1145/357062.357066.

Yossi Gil and Tomer Levy. Formal Language Recognition with the Java Type Checker.

56:10:1–10:27, 2016. ISSN 1868-8969. doi: 10.4230/LIPIcs.ECOOP.2016.10. URL http:

//drops.dagstuhl.de/opus/volltexte/2016/6104.

VM Glushkov, VG Bodnarchuk, TA Grinchenko, AA Dorodnitsyna, VP Klimenko,

AA Letichevskii, SB Pogrebinskii, AA Stognii, and Yu S Fishman. ANALITIK (algo-

rithmic language for the description of computing processes using analytical transforma-

tions). Cybernetics, 7(3):513–552, 1971. URL https://link.springer.com/content/pdf/10.

1007/BF01070461.pdf.

Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica und verwandter

systeme i. Monatshefte für mathematik und physik, 38(1):173–198, 1931.

C. F. Goldfarb. A generalized approach to document markup. In Proceedings of the ACM

SIGPLAN SIGOA Symposium on Text Manipulation, pages 68–73, New York, NY, USA,

1981. ACM. ISBN 0-89791-050-8. doi: 10.1145/800209.806456. URL https://doi.acm.org/

10.1145/800209.806456.

115

https://doi.acm.org/10.1145/964001.964011
https://doi.acm.org/10.1145/964001.964011
http://martinfowler.com/bliki/FluentInterface.html
https://doi.org/10.1109/ICSE.2017.75
https://doi.org/10.1088%2F1742-6596%2F898%2F8%2F082021
https://doi.acm.org/10.1145/357062.357066
https://doi.acm.org/10.1145/357062.357066
http://drops.dagstuhl.de/opus/volltexte/2016/6104
http://drops.dagstuhl.de/opus/volltexte/2016/6104
https://link.springer.com/content/pdf/10.1007/BF01070461.pdf
https://link.springer.com/content/pdf/10.1007/BF01070461.pdf
https://doi.acm.org/10.1145/800209.806456
https://doi.acm.org/10.1145/800209.806456

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Proceedings

of the 27th International Conference on Neural Information Processing Systems - Volume

2, NIPS’14, pages 2672–2680, Cambridge, MA, USA, 2014. MIT Press. URL https://dl.

acm.org/citation.cfm?id=2969033.2969125.

Maria I. Gorinova, Andrew D. Gordon, and Charles Sutton. Probabilistic programming

with densities in SlicStan: Efficient, flexible, and deterministic. Proc. ACM Program.

Lang., 3(POPL):35:1–35:30, January 2019. ISSN 2475-1421. doi: 10.1145/3290348. URL

https://doi.acm.org/10.1145/3290348.

Andreas Griewank. Some bounds on the complexity of gradients, Jacobians, and Hessians.

In Complexity in numerical optimization, pages 128–162. World Scientific, 1993. URL

http://ftp.mcs.anl.gov/pub/tech_reports/reports/P355.pdf.

Andreas Griewank et al. On automatic differentiation. Mathematical Programming: recent

developments and applications, 6(6):83–107, 1989.

P. R. Griffioen. Type inference for array programming with dimensioned vector spaces. In

Proceedings of the 27th Symposium on the Implementation and Application of Functional

Programming Languages, IFL ’15, pages 4:1–4:12, New York, NY, USA, 2015. ACM.

ISBN 978-1-4503-4273-5. doi: 10.1145/2897336.2897341. URL https://doi.acm.org/10.

1145/2897336.2897341.

Radu Grigore. Java generics are Turing Complete. pages 73–85, 2017. doi: 10.1145/3009837.

3009871. URL https://doi.acm.org/10.1145/3009837.3009871.

Martin Guenther. Are serious things done with ROS in Python?, 2018. URL https://

discourse.ros.org/t/are-serious-things-done-with-ros-in-python/4359/6.

Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. Semantically enhanced software trace-

ability using deep learning techniques. In 2017 IEEE/ACM 39th International Conference

on Software Engineering (ICSE), pages 3–14. IEEE, 2017. URL https://www.cs.mcgill.

ca/~jguo/resources/papers/ICSE2017_JIN_Preprint.pdf.

Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Continuations and corou-

tines. In Proceedings of the 1984 ACM Symposium on LISP and Functional Programming,

LFP ’84, pages 293–298, New York, NY, USA, 1984. ACM. ISBN 0-89791-142-3. doi:

10.1145/800055.802046. URL https://doi.acm.org/10.1145/800055.802046.

116

https://dl.acm.org/citation.cfm?id = 2969033.2969125
https://dl.acm.org/citation.cfm?id = 2969033.2969125
https://doi.acm.org/10.1145/3290348
http://ftp.mcs.anl.gov/pub/tech_reports/reports/P355.pdf
https://doi.acm.org/10.1145/2897336.2897341
https://doi.acm.org/10.1145/2897336.2897341
https://doi.acm.org/10.1145/3009837.3009871
https://discourse.ros.org/t/are-serious-things-done-with-ros-in-python/4359/6
https://discourse.ros.org/t/are-serious-things-done-with-ros-in-python/4359/6
https://www.cs.mcgill.ca/~jguo/resources/papers/ICSE2017_JIN_Preprint.pdf
https://www.cs.mcgill.ca/~jguo/resources/papers/ICSE2017_JIN_Preprint.pdf
https://doi.acm.org/10.1145/800055.802046

Jordan Henkel, Christian Bird, Shuvendu Lahiri, and Thomas Reps. Learn-

ing from, understanding, and supporting DevOps artifacts for Docker.

In 42nd International Conference on Software Engineering (ICSE’20),

May 2020. URL https://www.microsoft.com/en-us/research/publication/

learning-from-understanding-and-supporting-devops-artifacts-for-docker/.

Pieter Hintjens. ZeroMQ: messaging for many applications. O’Reilly Media, Inc., 2013.

Robert Hirschfeld, Pascal Costanza, and Oscar Marius Nierstrasz. Context-oriented pro-

gramming. Journal of Object Technology, 7(3):125–151, 2008.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal

approximators. Neural Netw., 2(5):359–366, July 1989. ISSN 0893-6080. doi: 10.1016/

0893-6080(89)90020-8. URL https://dx.doi.org/10.1016/0893-6080(89)90020-8.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley,

and Frédo Durand. DiffTaichi: Differentiable programming for physical simulation. CoRR,

abs/1910.00935, 2019. URL https://arxiv.org/abs/1910.00935.

Teijiro Isokawa, Tomoaki Kusakabe, Nobuyuki Matsui, and Ferdinand Peper. Quaternion

neural network and its application. In International Conference on Knowledge-Based and

Intelligent Information and Engineering Systems, pages 318–324. Springer, 2003. URL

https://link.springer.com/chapter/10.1007/978-3-540-45226-3_44.

Aleksĕı Grigorevich Ivakhnenko and Valentin Grigorévich Lapa. Cybernetic predicting

devices. CCM Information Corporation, 1965. URL https://books.google.ca/books?id=

FhwVNQAACAAJ.

Kenneth E Iverson. Math for the layman, 1999. URL http://www.cs.trinity.edu/About/

The_Courses/cs301/math-for-the-layman/.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G.

Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural

networks for efficient integer-arithmetic-only inference. volume abs/1712.05877, 2017. URL

https://arxiv.org/abs/1712.05877.

C. Barry Jay and Milan Sekanina. Shape checking of array programs. Technical report, In

Computing: the Australasian Theory Seminar, Proceedings, 1997.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-

shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for

117

https://www.microsoft.com/en-us/research/publication/learning-from-understanding-and-supporting-devops-artifacts-for-docker/
https://www.microsoft.com/en-us/research/publication/learning-from-understanding-and-supporting-devops-artifacts-for-docker/
https://dx.doi.org/10.1016/0893-6080(89)90020-8
https://arxiv.org/abs/1910.00935
https://link.springer.com/chapter/10.1007/978-3-540-45226-3_44
https://books.google.ca/books?id = FhwVNQAACAAJ
https://books.google.ca/books?id = FhwVNQAACAAJ
http://www.cs.trinity.edu/About/The_Courses/cs301/math-for-the-layman/
http://www.cs.trinity.edu/About/The_Courses/cs301/math-for-the-layman/
https://arxiv.org/abs/1712.05877

fast feature embedding. In Proceedings of the 22nd ACM International Conference on

Multimedia, MM ’14, pages 675–678, New York, NY, USA, 2014. ACM. ISBN 978-1-

4503-3063-3. doi: 10.1145/2647868.2654889. URL https://doi.acm.org/10.1145/2647868.

2654889.

M. Kac. On some connections between probability theory and differential and integral

equations. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics

and Probability, pages 189–215, Berkeley, Calif., 1951. University of California Press. URL

https://projecteuclid.org/euclid.bsmsp/1200500229.

W. Kahan. Further remarks on reducing truncation errors. Commun. ACM, 8(1):40–, Jan-

uary 1965. ISSN 0001-0782. doi: 10.1145/363707.363723. URL https://doi.acm.org/10.

1145/363707.363723.

Nidhi Kalra and Susan M Paddock. Driving to safety: How many miles of driving would

it take to demonstrate autonomous vehicle reliability? Transportation Research Part A:

Policy and Practice, 94:182–193, 2016.

K. Kastner, J. F. Santos, Y. Bengio, and A. Courville. Representation mixing for tts synthe-

sis. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 5906–5910, May 2019. doi: 10.1109/ICASSP.2019.8682880.

Robert Kelly, Barak A. Pearlmutter, and Jeffrey Mark Siskind. Evolving the incremental λ

calculus into a model of forward automatic differentiation (AD). CoRR, abs/1611.03429,

2016. URL https://arxiv.org/abs/1611.03429.

Andrew Kennedy. Dimension types. In European Symposium on Programming, pages 348–

362. Springer, 1994.

Andrew Kennedy. Types for Units-of-Measure: Theory and Practice, pages 268–305.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-17685-2. doi:

10.1007/978-3-642-17685-2_8. URL https://doi.org/10.1007/978-3-642-17685-2_8.

Andrew Kennedy and Claudio V. Russo. Generalized algebraic data types and object-

oriented programming. In Proceedings of the 20th Annual ACM SIGPLAN Conference

on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’05,

pages 21–40, New York, NY, USA, 2005. ACM. ISBN 1-59593-031-0. doi: 10.1145/

1094811.1094814. URL https://doi.acm.org/10.1145/1094811.1094814.

118

https://doi.acm.org/10.1145/2647868.2654889
https://doi.acm.org/10.1145/2647868.2654889
https://projecteuclid.org/euclid.bsmsp/1200500229
https://doi.acm.org/10.1145/363707.363723
https://doi.acm.org/10.1145/363707.363723
https://arxiv.org/abs/1611.03429
https://doi.org/10.1007/978-3-642-17685-2_8
https://doi.acm.org/10.1145/1094811.1094814

Andrew John Kennedy. Programming languages and dimensions. Technical report, Uni-

versity of Cambridge, Computer Laboratory, 1996. URL https://www.cl.cam.ac.uk/

techreports/UCAM-CL-TR-391.pdf.

B. W. Kernighan and P. J. Plauger. Software tools. SIGSOFT Softw. Eng. Notes, 1(1):

1520, May 1976. ISSN 0163-5948. doi: 10.1145/1010726.1010728. URL https://doi.org/

10.1145/1010726.1010728.

Oleg Kiselyov. Number-parameterized types. The Monad Reader, 5:73–118, 2005.

Oleg Kiselyov, Simon Peyton Jones, and Chung-chieh Shan. Fun with type functions. April

2009. URL https://www.microsoft.com/en-us/research/publication/fun-type-functions/.

Gerwin Klein, Steve Rowe, and Régis Décamps. JFlex-the fast scanner generator for Java.

2001. URL http://www.jflex.de.

Max Kochurov, Colin Carroll, Thomas Wiecki, and Junpeng Lao. PyMC4: Exploiting

coroutines for implementing a probabilistic programming framework. 2019. URL https:

//openreview.net/pdf?id=rkgzj5Za8H.

Rainer Koppler. A systematic approach to fuzzy parsing. Softw. Pract. Exper., 27(6):

637–649, June 1997. ISSN 0038-0644. doi: 10.1002/(SICI)1097-024X(199706)27:6<637::

AID-SPE99>3.0.CO;2-3. URL https://dx.doi.org/10.1002/(SICI)1097-024X(199706)27:

6<637::AID-SPE99>3.0.CO;2-3.

Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. Singularity: Scientific con-

tainers for mobility of compute. PLOS ONE, 12(5):1–20, 05 2017. doi: 10.1371/journal.

pone.0177459. URL https://doi.org/10.1371/journal.pone.0177459.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv

preprint arXiv:1912.01412, 2019. URL https://arxiv.org/pdf/1912.01412.pdf.

Leslie Lamport. A discussion with Leslie Lamport, August 2002. URL https://www.

microsoft.com/en-us/research/publication/discussion-leslie-lamport/.

Chris Lattner and Richard Wei. Swift for TensorFlow. 2018. URL https://github.com/

tensorflow/swift.

Chris Lattner, Jacques Pienaar, Mehdi Amini, Uday Bondhugula, River Riddle, Albert Co-

hen, Tatiana Shpeisman, Andy Davis, Nicolas Vasilache, and Oleksandr Zinenko. MLIR:

A compiler infrastructure for the end of Moore’s law, 2020.

119

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-391.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-391.pdf
https://doi.org/10.1145/1010726.1010728
https://doi.org/10.1145/1010726.1010728
https://www.microsoft.com/en-us/research/publication/fun-type-functions/
http://www.jflex.de
https://openreview.net/pdf?id=rkgzj5Za8H
https://openreview.net/pdf?id=rkgzj5Za8H
https://dx.doi.org/10.1002/(SICI)1097-024X(199706)27:6<637::AID-SPE99>3.0.CO;2-3
https://dx.doi.org/10.1002/(SICI)1097-024X(199706)27:6<637::AID-SPE99>3.0.CO;2-3
https://doi.org/10.1371/journal.pone.0177459
https://arxiv.org/pdf/1912.01412.pdf
https://www.microsoft.com/en-us/research/publication/discussion-leslie-lamport/
https://www.microsoft.com/en-us/research/publication/discussion-leslie-lamport/
https://github.com/tensorflow/swift
https://github.com/tensorflow/swift

Sören Laue. On the equivalence of forward mode automatic differentiation and symbolic

differentiation. CoRR, abs/1904.02990, 2019. URL https://arxiv.org/abs/1904.02990.

Sören Laue, Matthias Mitterreiter, and Joachim Giesen. Computing higher order

derivatives of matrix and tensor expressions. In Advances in Neural Information

Processing Systems, pages 2750–2759, 2018. URL http://papers.nips.cc/paper/

7540-computing-higher-order-derivatives-of-matrix-and-tensor-expressions.pdf.

Sören Laue, Matthias Mitterreiter, and Joachim Giesen. A simple and efficient tensor calcu-

lus. In Conference on Artificial Intelligence (AAAI), 2020. URL https://theinf2.informatik.

uni-jena.de/theinf2_multimedia/Publications/tensorCalculus.pdf.

Gary T Leavens and Todd D Millstein. Multiple dispatch as dispatch on tuples. ACM

SIGPLAN Notices, 33(10):374–387, 1998. URL http://web.cs.ucla.edu/~todd/research/

oopsla98.pdf.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):

436–444, 5 2015. ISSN 0028-0836. doi: 10.1038/nature14539.

Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-Kelley.

Differentiable programming for image processing and deep learning in Halide. ACM Trans.

Graph., 37(4):139:1–139:13, July 2018. ISSN 0730-0301. doi: 10.1145/3197517.3201383.

URL https://doi.acm.org/10.1145/3197517.3201383.

J. C. R. Licklider. Man-computer symbiosis. IEEE Ann. Hist. Comput., 14(1):24–, January

1992. ISSN 1058-6180. URL https://dl.acm.org/citation.cfm?id=612400.612433.

David Lieb, Andrew Lookingbill, and Sebastian Thrun. Adaptive road following using self-

supervised learning and reverse optical flow. In Robotics: science and systems, pages

273–280, 2005.

Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Numerical

Mathematics, 16(2):146–160, Jun 1976. ISSN 1572-9125. doi: 10.1007/BF01931367. URL

https://doi.org/10.1007/BF01931367.

Barbara Liskov. Keynote address - data abstraction and hierarchy. SIGPLAN Not., 23(5):

17–34, January 1987. ISSN 0362-1340. doi: 10.1145/62139.62141. URL https://doi.acm.

org/10.1145/62139.62141.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search.

CoRR, abs/1806.09055, 2018. URL https://arxiv.org/abs/1806.09055.

120

https://arxiv.org/abs/1904.02990
http://papers.nips.cc/paper/7540-computing-higher-order-derivatives-of-matrix-and-tensor-expressions.pdf
http://papers.nips.cc/paper/7540-computing-higher-order-derivatives-of-matrix-and-tensor-expressions.pdf
https://theinf2.informatik.uni-jena.de/theinf2_multimedia/Publications/tensorCalculus.pdf
https://theinf2.informatik.uni-jena.de/theinf2_multimedia/Publications/tensorCalculus.pdf
http://web.cs.ucla.edu/~todd/research/oopsla98.pdf
http://web.cs.ucla.edu/~todd/research/oopsla98.pdf
https://doi.acm.org/10.1145/3197517.3201383
https://dl.acm.org/citation.cfm?id = 612400.612433
https://doi.org/10.1007/BF01931367
https://doi.acm.org/10.1145/62139.62141
https://doi.acm.org/10.1145/62139.62141
https://arxiv.org/abs/1806.09055

P Martin Lof et al. An intuitionistic theory of types. In Predicative part colloquium, pages

73–118, 1973.

Matthew M Loper and Michael J Black. OpenDR: An approximate differentiable renderer.

In European Conference on Computer Vision, pages 154–169. Springer, 2014.

Daniel Lowd and Christopher Meek. Adversarial learning. In Proceedings of the Eleventh

ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD

’05, pages 641–647, New York, NY, USA, 2005. ACM. ISBN 1-59593-135-X. doi: 10.1145/

1081870.1081950. URL https://doi.acm.org/10.1145/1081870.1081950.

Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: Stronger

multi-scale deep graph convolutional networks. In Advances in Neural Information

Processing Systems, pages 10943–10953, 2019.

David R. MacIver. Hypothesis, 2018. URL https://github.com/HypothesisWorks/

hypothesis.

Dougal Maclaurin. Modeling, Inference and Optimization with Composable Differentiable

Procedures. PhD thesis, Harvard University, April 2016. URL https://dash.harvard.edu/

handle/1/33493599.

Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless gradients

in NumPy. In ICML 2015 AutoML Workshop, 2015. URL https://github.com/HIPS/

autograd.

J.R. Magnus and H. Neudecker. Matrix differential calculus with applications in statistics

and econometrics. Wiley series in probability and mathematical statistics. Wiley, 1988.

ISBN 0471915165. Pagination: xvii, 393.

Dhruv C. Makwana and Neelakantan R. Krishnaswami. NumLin: Linear Types for Linear

Algebra. In Alastair F. Donaldson, editor, 33rd European Conference on Object-Oriented

Programming (ECOOP 2019), volume 134 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 14:1–14:25, Dagstuhl, Germany, 2019. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-111-5. doi: 10.4230/LIPIcs.ECOOP.

2019.14. URL http://drops.dagstuhl.de/opus/volltexte/2019/10806.

Antony Martin, Simone Raponi, Théo Combe, and Roberto Di Pietro. Docker ecosystem–

vulnerability analysis. Computer Communications, 122:30–43, 2018.

121

https://doi.acm.org/10.1145/1081870.1081950
https://github.com/HypothesisWorks/hypothesis
https://github.com/HypothesisWorks/hypothesis
https://dash.harvard.edu/handle/1/33493599
https://dash.harvard.edu/handle/1/33493599
https://github.com/HIPS/autograd
https://github.com/HIPS/autograd
http://drops.dagstuhl.de/opus/volltexte/2019/10806

Joaquim RRA Martins, Peter Sturdza, and Juan J Alonso. The complex-step derivative

approximation. ACM Transactions on Mathematical Software (TOMS), 29(3):245–262,

2003.

Conor McBride. The derivative of a regular type is its type of one-hole contexts. 2001.

Conor McBride. Clowns to the left of me, jokers to the right (pearl): Dissecting data

structures. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’08, pages 287–295, New York, NY, USA,

2008. ACM. ISBN 978-1-59593-689-9. doi: 10.1145/1328438.1328474. URL https://doi.

acm.org/10.1145/1328438.1328474.

John McCarthy. Recursive functions of symbolic expressions and their computation by

machine, part i. Communications of the ACM, 3(4):184–195, 1960. URL https://doi.org/

10.1145/367177.367199.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J. Pal, and Liam Paull. Active

domain randomization, 2019. URL https://arxiv.org/abs/1904.04762.

Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: reconciling object, relations and

XML in the .NET framework. In Proceedings of the 2006 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’06, pages 706–706, New York, NY, USA,

2006. ACM. ISBN 1-59593-434-0. doi: 10.1145/1142473.1142552. URL https://doi.acm.

org/10.1145/1142473.1142552.

Paul B Menage. Adding generic process containers to the Linux kernel. In Proceedings of

the Linux Symposium, volume 2, pages 45–57, 2007.

Charith Mendis, Cambridge Yang, Yewen Pu, Dr.Saman Amarasinghe, and Michael

Carbin. Compiler auto-vectorization with imitation learning. In H. Wal-

lach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems 32, pages

14598–14609. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/

9604-compiler-auto-vectorization-with-imitation-learning.pdf.

Dirk Merkel. Docker: lightweight Linux containers for consistent development and de-

ployment. Linux Journal, 2014(239), March 2014. ISSN 1075-3583. URL https:

//dl.acm.org/citation.cfm?id=2600239.2600241.

122

https://doi.acm.org/10.1145/1328438.1328474
https://doi.acm.org/10.1145/1328438.1328474
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199
https://arxiv.org/abs/1904.04762
https://doi.acm.org/10.1145/1142473.1142552
https://doi.acm.org/10.1145/1142473.1142552
http://papers.nips.cc/paper/9604-compiler-auto-vectorization-with-imitation-learning.pdf
http://papers.nips.cc/paper/9604-compiler-auto-vectorization-with-imitation-learning.pdf
https://dl.acm.org/citation.cfm?id = 2600239.2600241
https://dl.acm.org/citation.cfm?id = 2600239.2600241

Matthew Might, David Darais, and Daniel Spiewak. Parsing with derivatives: A functional

pearl. In Proceedings of the 16th ACM SIGPLAN International Conference on Functional

Programming, ICFP ’11, pages 189–195, New York, NY, USA, 2011. ACM. ISBN 978-1-

4503-0865-6. doi: 10.1145/2034773.2034801. URL https://doi.acm.org/10.1145/2034773.

2034801.

Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jain. Memory limited, stream-

ing PCA. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and

K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26,

pages 2886–2894. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/

5035-memory-limited-streaming-pca.pdf.

Aaron Moss. Derivatives of Parsing Expression Grammars. In Proceedings 15th International

Conference on Automata and Formal Languages, AFL 2017, Debrecen, Hungary,

September 4-6, 2017., pages 180–194, 2017. doi: 10.4204/EPTCS.252.18. URL https:

//doi.org/10.4204/EPTCS.252.18.

Maurice Naftalin and Philip Wadler. Java generics and collections. O’Reilly Media, 2007.

Tomoki Nakamaru, Kazuhiro Ichikawa, Tetsuro Yamazaki, and Shigeru Chiba. Silver-

chain: A fluent API generator. In Proceedings of the 16th ACM SIGPLAN International

Conference on Generative Programming: Concepts and Experiences, GPCE 2017, pages

199–211, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5524-7. doi: 10.1145/

3136040.3136041. URL https://doi.acm.org/10.1145/3136040.3136041.

Peter Naur. Programming as theory building. Microprocessing and microprogramming, 15

(5):253–261, 1985.

Yuri Nesterov. Gradient methods for minimizing composite functions. Mathematical

Programming, 140(1):125–161, Aug 2013. ISSN 1436-4646. doi: 10.1007/

s10107-012-0629-5. URL https://doi.org/10.1007/s10107-012-0629-5.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios

Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin

Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhi-

guna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew

Richardson, Naomi Saphra, Swabha Swayamdipta, and Pengcheng Yin. DyNet: The dy-

namic neural network toolkit. arXiv preprint arXiv:1701.03980, 2017.

123

https://doi.acm.org/10.1145/2034773.2034801
https://doi.acm.org/10.1145/2034773.2034801
http://papers.nips.cc/paper/5035-memory-limited-streaming-pca.pdf
http://papers.nips.cc/paper/5035-memory-limited-streaming-pca.pdf
https://doi.org/10.4204/EPTCS.252.18
https://doi.org/10.4204/EPTCS.252.18
https://doi.acm.org/10.1145/3136040.3136041
https://doi.org/10.1007/s10107-012-0629-5

Virginia Niculescu. A design proposal for an object oriented algebraic library. Studia

Universitatis Babes-Bolyai, Informatica, 48(1):89–100, 2003.

Virginia Niculescu. On using generics for implementing algebraic structures. Studia

Universitatis Babes-Bolyai, Informatica, 56(4), 2011. URL https://www.cs.ubbcluj.ro/

~studia-i/contents/2011-4/02-Niculescu.pdf.

Alexander Nozik. Kotlin language for science and kMath library. AIP Conference

Proceedings, 2163(1):040004, 2019. doi: 10.1063/1.5130103. URL https://aip.scitation.

org/doi/abs/10.1063/1.5130103.

Yu Nureki. JAutoDiff: A pure Java library for automatic differentiation, 2012. URL https:

//github.com/uniker9/JAutoDiff.

Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum and dot product. SIAM

J. Sci. Comput., 26(6):1955–1988, June 2005. ISSN 1064-8275. doi: 10.1137/030601818.

URL https://dx.doi.org/10.1137/030601818.

Christopher Olah. Neural networks, types, and functional programming. 2015. URL https:

//colah.github.io/posts/2015-09-NN-Types-FP.

John-Paul Ore, Sebastian Elbaum, Carrick Detweiler, and Lambros Karkazis. Assessing the

type annotation burden. In Proceedings of the 33rd ACM/IEEE International Conference

on Automated Software Engineering, pages 190–201, 2018. URL https://jpwco.com/pdf/

ase18main-p15-p-bcc79e2-37685-final.pdf.

Gerardo Pardo-Castellote. OMG Data-Distribution Service: Architectural overview. In

23rd International Conference on Distributed Computing Systems Workshops, 2003.

Proceedings., pages 200–206. IEEE, 2003.

Terence J. Parr and Russell W. Quong. ANTLR: A predicated-LL (k) parser generator.

Software: Practice and Experience, 25(7):789–810, 1995.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-

ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. PyTorch: An imperative style, high-performance deep learn-

ing library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox,

and R. Garnett, editors, Advances in Neural Information Processing Systems 32,

124

https://www.cs.ubbcluj.ro/~studia-i/contents/2011-4/02-Niculescu.pdf
https://www.cs.ubbcluj.ro/~studia-i/contents/2011-4/02-Niculescu.pdf
https://aip.scitation.org/doi/abs/10.1063/1.5130103
https://aip.scitation.org/doi/abs/10.1063/1.5130103
https://github.com/uniker9/JAutoDiff
https://github.com/uniker9/JAutoDiff
https://dx.doi.org/10.1137/030601818
https://colah.github.io/posts/2015-09-NN-Types-FP
https://colah.github.io/posts/2015-09-NN-Types-FP
https://jpwco.com/pdf/ase18main-p15-p-bcc79e2-37685-final.pdf
https://jpwco.com/pdf/ase18main-p15-p-bcc79e2-37685-final.pdf

pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Liam Paull, Howard Li, and Liuchen Chang. A novel domestic electric water heater model for

a multi-objective demand side management program. Electric Power Systems Research,

80(12):1446–1451, 2010.

Liam Paull, Jacopo Tani, Heejin Ahn, Javier Alonso-Mora, Luca Carlone, Michal Cap,

Yu Fan Chen, Changhyun Choi, Jeff Dusek, Yajun Fang, et al. Duckietown: an open,

inexpensive and flexible platform for autonomy education and research. In 2017 IEEE

International Conference on Robotics and Automation (ICRA), pages 1497–1504. IEEE,

2017.

David J Pearce and James Noble. Implementing a language with flow-sensitive and structural

typing on the jvm. Electronic Notes in Theoretical Computer Science, 279(1):47–59, 2011.

Barak A Pearlmutter and Jeffrey Mark Siskind. Reverse-mode AD in a functional framework:

Lambda the ultimate backpropagator. ACM Transactions on Programming Languages and

Systems (TOPLAS), 30(2):7, 2008a.

Barak A. Pearlmutter and Jeffrey Mark Siskind. Using programming language theory to

make automatic differentiation sound and efficient. pages 79–90, 2008b. ISSN 1439-

7358. doi: 10.1007/978-3-540-68942-3_8. URL http://www.bcl.hamilton.ie/~barak/

papers/sound-efficient-ad2008.pdf.

Vaclav Pech, Alex Shatalin, and Markus Voelter. JetBrains MPS as a tool for extending

Java. In Proceedings of the 2013 International Conference on Principles and Practices

of Programming on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ

’13, pages 165–168, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2111-2. doi:

10.1145/2500828.2500846. URL https://doi.acm.org/10.1145/2500828.2500846.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. DeepXplore: Automated whitebox

testing of deep learning systems. In Proceedings of the 26th Symposium on Operating

Systems Principles, SOSP ’17, pages 1–18, New York, NY, USA, 2017. ACM. ISBN

978-1-4503-5085-3. doi: 10.1145/3132747.3132785. URL https://doi.acm.org/10.1145/

3132747.3132785.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for

word representation. In Proceedings of the 2014 Conference on Empirical Methods in

125

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.bcl.hamilton.ie/~barak/papers/sound-efficient-ad2008.pdf
http://www.bcl.hamilton.ie/~barak/papers/sound-efficient-ad2008.pdf
https://doi.acm.org/10.1145/2500828.2500846
https://doi.acm.org/10.1145/3132747.3132785
https://doi.acm.org/10.1145/3132747.3132785

Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, October 2014.

Association for Computational Linguistics. doi: 10.3115/v1/D14-1162. URL https://

www.aclweb.org/anthology/D14-1162.

Kaare Brandt Petersen et al. The Matrix Cookbook. 2012. URL https://www.math.

uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.

Leonardo Piñeyro, Alberto Pardo, and Marcos Viera. Structure verification of deep neural

networks at compilation time using dependent types. In Proceedings of the XXIII Brazilian

Symposium on Programming Languages, SBLP 2019, pages 46–53, New York, NY, USA,

2019. ACM. ISBN 978-1-4503-7638-9. doi: 10.1145/3355378.3355379. URL https://doi.

acm.org/10.1145/3355378.3355379.

Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun. Policy-contingent abstraction for ro-

bust robot control. In Proceedings of Conference on Uncertainty in Articifical Intelligence

(UAI), pages 477 – 484, August 2003. URL https://arxiv.org/pdf/1212.2495.pdf.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelz-

imer, Florence d’Alché Buc, Emily Fox, and Hugo Larochelle. Improving reproducibility

in machine learning research (a report from the neurips 2019 reproducibility program),

2020. URL https://arxiv.org/pdf/2003.12206.pdf.

Gordon Plotkin. Some principles of differential programming languages. POPL, 2018.

Gill A Pratt. Is a Cambrian explosion coming for robotics? Journal of Economic Perspectives,

29(3):51–60, 2015. URL https://www.aeaweb.org/full_issue.php?doi=10.1257/jep.29.3#

page=53.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob

Wheeler, and Andrew Y Ng. ROS: an open-source Robot Operating System. In ICRA

workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

Mirco Ravanelli, Dmitriy Serdyuk, and Yoshua Bengio. Twin regularization for online speech

recognition. Interspeech 2018, Sep 2018. doi: 10.21437/interspeech.2018-1407. URL

http://dx.doi.org/10.21437/Interspeech.2018-1407.

Baishakhi Ray, Daryl Posnett, Premkumar Devanbu, and Vladimir Filkov. A large-scale

study of programming languages and code quality in GitHub. Commun. ACM, 60(10):

91–100, September 2017. ISSN 0001-0782. doi: 10.1145/3126905. URL https://doi.acm.

org/10.1145/3126905.

126

https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://doi.acm.org/10.1145/3355378.3355379
https://doi.acm.org/10.1145/3355378.3355379
https://arxiv.org/pdf/1212.2495.pdf
https://arxiv.org/pdf/2003.12206.pdf
https://www.aeaweb.org/full_issue.php?doi = 10.1257/jep.29.3#page = 53
https://www.aeaweb.org/full_issue.php?doi = 10.1257/jep.29.3#page = 53
http://dx.doi.org/10.21437/Interspeech.2018-1407
https://doi.acm.org/10.1145/3126905
https://doi.acm.org/10.1145/3126905

Norman A. Rink. Modeling of languages for tensor manipulation. CoRR, abs/1801.08771,

2018. URL https://arxiv.org/abs/1801.08771.

Mikael Rittri. Dimension inference under polymorphic recursion. In Proceedings of the

Seventh International Conference on Functional Programming Languages and Computer

Architecture, FPCA ’95, pages 147–159, New York, NY, USA, 1995. ACM. ISBN 0-89791-

719-7. doi: 10.1145/224164.224197. URL https://doi.acm.org/10.1145/224164.224197.

Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa Kirisame, Tianqi

Chen, and Zachary Tatlock. Relay: A new IR for machine learning frameworks. In

Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and

Programming Languages, MAPL 2018, pages 58–68, New York, NY, USA, 2018. ACM.

ISBN 978-1-4503-5834-7. doi: 10.1145/3211346.3211348. URL https://doi.acm.org/10.

1145/3211346.3211348.

Tiark Rompf and Martin Odersky. Lightweight modular staging: A pragmatic approach to

runtime code generation and compiled DSLs. In Proceedings of the Ninth International

Conference on Generative Programming and Component Engineering, GPCE ’10, pages

127–136, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0154-1. doi: 10.1145/

1868294.1868314. URL https://doi.acm.org/10.1145/1868294.1868314.

Frank Rosenblatt. The Perceptron: a probabilistic model for information storage and or-

ganization in the brain. Psychological review, 65(6):386, 1958. URL https://www.ling.

upenn.edu/courses/cogs501/Rosenblatt1958.pdf.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman Dzhabarov, James

Hegeman, Roman Levenstein, Bert Maher, Nadathur Satish, Jakob Olesen, Jongsoo Park,

Artem Rakhov, and Misha Smelyanskiy. Glow: Graph lowering compiler techniques for

neural networks. CoRR, abs/1805.00907, 2018. URL https://arxiv.org/abs/1805.00907.

W. W. Royce. Managing the development of large software systems: Concepts and tech-

niques. In Proceedings of the 9th International Conference on Software Engineering, ICSE

’87, pages 328–338, Los Alamitos, CA, USA, 1987. IEEE Computer Society Press. ISBN

0-89791-216-0. URL https://dl.acm.org/citation.cfm?id=41765.41801.

Claudio Ruch, Sebastian Hörl, and Emilio Frazzoli. AMoDeus, a simulation-based testbed

for autonomous mobility-on-demand systems. 2018 21st International Conference on

Intelligent Transportation Systems (ITSC), pages 3639–3644, 2018. URL https://www.

127

https://arxiv.org/abs/1801.08771
https://doi.acm.org/10.1145/224164.224197
https://doi.acm.org/10.1145/3211346.3211348
https://doi.acm.org/10.1145/3211346.3211348
https://doi.acm.org/10.1145/1868294.1868314
https://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf
https://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf
https://arxiv.org/abs/1805.00907
https://dl.acm.org/citation.cfm?id = 41765.41801
https://www.amodeus.science/
https://www.amodeus.science/

amodeus.science/.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Neurocomputing: Foun-

dations of research. pages 696–699, 1988. URL https://dl.acm.org/citation.cfm?id=65669.

104451.

Jerome H Saltzer and Michael D Schroeder. The protection of information in computer

systems. Proceedings of the IEEE, 63(9):1278–1308, 1975. URL http://web.mit.edu/

Saltzer/www/publications/rfc/csr-rfc-060.pdf.

Stephen Samuel and Leonardo Colman Lopes. KotlinTest, 2018. URL https://github.com/

kotlintest/kotlintest.

Moses Schönfinkel. Über die bausteine der mathematischen logik. Mathematische annalen,

92(3):305–316, 1924.

F. F. Sellers, M. Y. Hsiao, and L. W. Bearnson. Analyzing errors with the boolean difference.

IEEE Trans. Comput., 17(7):676–683, July 1968. ISSN 0018-9340. doi: 10.1109/TC.1968.

227417. URL https://doi.org/10.1109/TC.1968.227417.

Claude E Shannon. Programming a computer for playing chess. The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science, 41(314):256–275, 1950. URL

https://www.tandfonline.com/doi/abs/10.1080/14786445008521796.

Jeffrey Mark Siskind and Barak A. Pearlmutter. Nesting forward-mode AD in a func-

tional framework. Higher-Order and Symbolic Computation, 21(4):361–376, Dec 2008.

ISSN 1573-0557. doi: 10.1007/s10990-008-9037-1. URL https://doi.org/10.1007/

s10990-008-9037-1.

Michael Sperber, R Kent Dybvig, Matthew Flatt, Anton Van Straaten, Robby Findler,

and Jacob Matthews. Revised6 report on the algorithmic language Scheme. Journal of

Functional Programming, 19(S1):1–301, 2009. URL http://www.r6rs.org/final/html/r6rs/

r6rs.html.

Vincent St-Amour, Sam Tobin-Hochstadt, Matthew Flatt, and Matthias Felleisen. Typ-

ing the numeric tower. In International Symposium on Practical Aspects of Declarative

Languages, pages 289–303. Springer, 2012.

Bernd Steinbach and Christian Posthoff. Boolean differential calculus. Synthesis Lectures

on Digital Circuits and Systems, 12(1):1–215, 2017.

128

https://www.amodeus.science/
https://dl.acm.org/citation.cfm?id = 65669.104451
https://dl.acm.org/citation.cfm?id = 65669.104451
http://web.mit.edu/Saltzer/www/publications/rfc/csr-rfc-060.pdf
http://web.mit.edu/Saltzer/www/publications/rfc/csr-rfc-060.pdf
https://github.com/kotlintest/kotlintest
https://github.com/kotlintest/kotlintest
https://doi.org/10.1109/TC.1968.227417
https://www.tandfonline.com/doi/abs/10.1080/14786445008521796
https://doi.org/10.1007/s10990-008-9037-1
https://doi.org/10.1007/s10990-008-9037-1
http://www.r6rs.org/final/html/r6rs/r6rs.html
http://www.r6rs.org/final/html/r6rs/r6rs.html

Arvind Sujeeth, HyoukJoong Lee, Kevin Brown, Tiark Rompf, Hassan Chafi, Michael

Wu, Anand Atreya, Martin Odersky, and Kunle Olukotun. OptiML: an implicitly

parallel domain-specific language for machine learning. In Proceedings of the 28th

International Conference on Machine Learning (ICML-11), pages 609–616, 2011. URL

https://stanford-ppl.github.io/website/papers/icml11-sujeeth.pdf.

Gerald J. Sussman and Guy L. Steele, Jr. Scheme: An interpreter for Extended Lambda

Calculus. Technical report, Cambridge, MA, USA, 1975.

Norihisa Suzuki and David Jefferson. Verification decidability of Presburger array programs.

J. ACM, 27(1):191–205, January 1980. ISSN 0004-5411. doi: 10.1145/322169.322185.

URL https://doi.acm.org/10.1145/322169.322185.

AD Talantsev. On the analysis and synthesis of certain electrical circuits by means of special

logical operators. Avt. i Telem., 20(7):898–907, 1959. URL http://www.mathnet.ru/links/

bafa0b55349439b7d01a805198178a20/at12783.pdf.

Ross Tate. Mixed-site variance. In FOOL ’13: Informal Proceedings of the 20th International

Workshop on Foundations of Object-Oriented Languages, 2013. URL http://www.cs.

cornell.edu/~ross/publications/mixedsite/.

H. C. A. Tavante, Benedito Donizeti Bonatto, and Maurilio Pereira Coutinho. Open source

implementations of electromagnetic transient algorithms. 2018 13th IEEE International

Conference on Industry Applications (INDUSCON), pages 825–828, 2018. URL https:

//github.com/hannelita/PyTHTA.

Eclipse Deeplearning4j Development Team. DL4J: Deep Learning for Java. 2016a. URL

https://github.com/eclipse/deeplearning4j.

Eclipse Deeplearning4j Development Team. ND4J: Fast, scientific and numerical computing

for the JVM. 2016b. URL https://github.com/eclipse/deeplearning4j.

A. Thayse and M. Davio. Boolean differential calculus and its application to switching

theory. IEEE Trans. Comput., 22(4):409–420, April 1973. ISSN 0018-9340. doi: 10.1109/

T-C.1973.223729. URL https://dx.doi.org/10.1109/T-C.1973.223729.

Andre Thayse. Boolean calculus of differences, volume 101 of ser-LNCS. 1981. ISBN 0-387-

10286-8 (paperback). URL https://www.springer.com/gp/book/9783540102861.

Sebastian Thrun. Towards programming tools for robots that integrate probabilistic

computation and learning. In Proceedings 2000 ICRA. Millennium Conference. IEEE

129

https://stanford-ppl.github.io/website/papers/icml11-sujeeth.pdf
https://doi.acm.org/10.1145/322169.322185
http://www.mathnet.ru/links/bafa0b55349439b7d01a805198178a20/at12783.pdf
http://www.mathnet.ru/links/bafa0b55349439b7d01a805198178a20/at12783.pdf
http://www.cs.cornell.edu/~ross/publications/mixedsite/
http://www.cs.cornell.edu/~ross/publications/mixedsite/
https://github.com/hannelita/PyTHTA
https://github.com/hannelita/PyTHTA
https://github.com/eclipse/deeplearning4j
https://github.com/eclipse/deeplearning4j
https://dx.doi.org/10.1109/T-C.1973.223729
https://www.springer.com/gp/book/9783540102861

International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.

00CH37065), volume 1, pages 306–312. IEEE, 2000.

Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing of

deep-neural-network-driven autonomous cars. In Proceedings of the 40th International

Conference on Software Engineering, ICSE ’18, pages 303–314, New York, NY, USA,

2018. ACM. ISBN 978-1-4503-5638-1. doi: 10.1145/3180155.3180220. URL https://doi.

acm.org/10.1145/3180155.3180220.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation open

source framework for deep learning. In Proceedings of Workshop on Machine Learning

Systems (LearningSys) in The Twenty-ninth Annual Conference on Neural Information

Processing Systems (NIPS), 2015. URL http://learningsys.org/papers/LearningSys_

2015_paper_33.pdf.

Jean-Baptiste Tristan, Daniel Huang, Joseph Tassarotti, Adam C Pocock, Stephen Green,

and Guy L Steele. Augur: Data-parallel probabilistic modeling. In Advances in Neural

Information Processing Systems, pages 2600–2608, 2014. URL https://papers.nips.cc/

paper/5531-augur-data-parallel-probabilistic-modeling.pdf.

Christos Tsirigotis, Xavier Bouthillier, François Corneau-Tremblay, Peter Henderson,

Reyhane Askari, Samuel Lavoie-Marchildon, Tristan Deleu, Dendi Suhubdy, Michael

Noukhovitch, Frédéric Bastien, et al. Oríon: Experiment version control for efficient

hyperparameter optimization. 2018. URL https://openreview.net/pdf?id=r1xkNLPixX.

Ryan Turner. A model explanation system. In 2016 IEEE 26th International Workshop on

Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE, 2016.

Ryan Turner and Brady Neal. How well does your sampler really work? arXiv preprint

arXiv:1712.06006, 2017. URL https://arxiv.org/pdf/1712.06006.pdf.

Ryan Turner, Jane Hung, Eric Frank, Yunus Saatchi, and Jason Yosinski. Metropolis-

Hastings Generative Adversarial Networks. In Kamalika Chaudhuri and Ruslan Salakhut-

dinov, editors, Proceedings of the 36th International Conference on Machine Learning, vol-

ume 97 of Proceedings of Machine Learning Research, pages 6345–6353, Long Beach, Cal-

ifornia, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/turner19a.

html.

130

https://doi.acm.org/10.1145/3180155.3180220
https://doi.acm.org/10.1145/3180155.3180220
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
https://papers.nips.cc/paper/5531-augur-data-parallel-probabilistic-modeling.pdf
https://papers.nips.cc/paper/5531-augur-data-parallel-probabilistic-modeling.pdf
https://openreview.net/pdf?id=r1xkNLPixX
https://arxiv.org/pdf/1712.06006.pdf
http://proceedings.mlr.press/v97/turner19a.html
http://proceedings.mlr.press/v97/turner19a.html

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The NumPy array: a structure

for efficient numerical computation. Computing in Science & Engineering, 13(2):22, 2011.

Bart van Merriënboer. Sequence-to-sequence learning for machine translation and automatic

differentiation for machine learning software tools. PhD thesis, Université de Montréal,

September 2018. URL http://hdl.handle.net/1866/21743.

Bart van Merriënboer, Dan Moldovan, and Alexander Wiltschko. Tangent: Automatic dif-

ferentiation using source-code transformation for dynamically typed array programming.

In Advances in Neural Information Processing Systems 31, pages 6256–6265, 2018. URL

https://arxiv.org/abs/1711.02712.

Bart van Merriënboernboer, Olivier Breuleux, Arnaud Bergeron, and Pascal Lamblin. Au-

tomatic differentiation in ML: where we are and where we should be going. CoRR,

abs/1810.11530, 2018. URL https://arxiv.org/abs/1810.11530.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito,

William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor Com-

prehensions: Framework-agnostic high-performance machine learning abstractions, 2018.

URL https://arxiv.org/abs/1802.04730.

Markus Voelter and Konstantin Solomatov. Language modularization and compo-

sition with projectional language workbenches illustrated with MPS. Software

Language Engineering, SLE, 16(3), 2010. URL https://pdfs.semanticscholar.org/5adb/

c633179cd7d32e1c1840225b2890ddeb32a5.pdf.

Markus Voelter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. Towards user-friendly

projectional editors. In Benoît Combemale, David J. Pearce, Olivier Barais, and Jur-

gen J. Vinju, editors, Software Language Engineering, pages 41–61, Cham, 2014. Springer

International Publishing. ISBN 978-3-319-11245-9. URL https://gsd.uwaterloo.ca/sites/

default/files/2014-sle-projectional.pdf.

Tim A. Wagner and Susan L. Graham. Incremental analysis of real programming languages.

In Proceedings of the ACM SIGPLAN 1997 Conference on Programming Language Design

and Implementation, PLDI ’97, pages 31–43, New York, NY, USA, 1997. ACM. ISBN 0-

89791-907-6. URL https://doi.acm.org/10.1145/258915.258920.

Timothy A. Wagner. Practical Algorithms for Incremental Software Development

Environments. PhD thesis, EECS Department, University of California, Berkeley, Mar

131

http://hdl.handle.net/1866/21743
https://arxiv.org/abs/1711.02712
https://arxiv.org/abs/1810.11530
https://arxiv.org/abs/1802.04730
https://pdfs.semanticscholar.org/5adb/c633179cd7d32e1c1840225b2890ddeb32a5.pdf
https://pdfs.semanticscholar.org/5adb/c633179cd7d32e1c1840225b2890ddeb32a5.pdf
https://gsd.uwaterloo.ca/sites/default/files/2014-sle-projectional.pdf
https://gsd.uwaterloo.ca/sites/default/files/2014-sle-projectional.pdf
https://doi.acm.org/10.1145/258915.258920

1998. URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/1998/5885.html.

Fei Wang, James Decker, Xilun Wu, Gregory Essertel, and Tiark Rompf. Backpropagation

with callbacks: Foundations for efficient and expressive differentiable programming. In

Advances in Neural Information Processing Systems 31, pages 10180–10191, 2018a. URL

https://www.cs.purdue.edu/homes/rompf/papers/wang-nips18.pdf.

Fei Wang, Xilun Wu, Gregory M. Essertel, James M. Decker, and Tiark Rompf. Demys-

tifying differentiable programming: Shift/reset the penultimate backpropagator. CoRR,

abs/1803.10228, 2018b. URL https://arxiv.org/abs/1803.10228.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing

Xie, and Minyi Guo. GraphGAN: Graph representation learning with Generative Ad-

versarial Nets. 2018c. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/

view/16611.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan.

Training deep neural networks with 8-bit floating point numbers. In Proceedings of the

32nd International Conference on Neural Information Processing Systems, NIPS’18, pages

7686–7695, 2018d. URL https://dl.acm.org/citation.cfm?id=3327757.3327866.

Xie Wang, Huaijin Wang, Zhendong Su, et al. Global optimization of numerical programs via

prioritized stochastic algebraic transformations. In Proceedings of the 41st International

Conference on Software Engineering, ICSE ’19, pages 1131–1141, Piscataway, NJ, USA,

2019. IEEE Press. doi: 10.1109/ICSE.2019.00116. URL https://doi.org/10.1109/ICSE.

2019.00116.

Richard Wei, Vikram S. Adve, and Lane Schwartz. DLVM: A modern compiler infrastructure

for deep learning systems. CoRR, abs/1711.03016, 2017. URL https://arxiv.org/abs/1711.

03016.

R. E. Wengert. A simple automatic derivative evaluation program. Commun. ACM, 7

(8):463–464, August 1964. ISSN 0001-0782. doi: 10.1145/355586.364791. URL https:

//doi.acm.org/10.1145/355586.364791.

Paul J Werbos et al. Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560, 1990.

Ruffin White and Henrik Christensen. ROS and Docker. In Robot Operating System (ROS),

pages 285–307. Springer, 2017.

132

http://www2.eecs.berkeley.edu/Pubs/TechRpts/1998/5885.html
https://www.cs.purdue.edu/homes/rompf/papers/wang-nips18.pdf
https://arxiv.org/abs/1803.10228
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16611
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16611
https://dl.acm.org/citation.cfm?id = 3327757.3327866
https://doi.org/10.1109/ICSE.2019.00116
https://doi.org/10.1109/ICSE.2019.00116
https://arxiv.org/abs/1711.03016
https://arxiv.org/abs/1711.03016
https://doi.acm.org/10.1145/355586.364791
https://doi.acm.org/10.1145/355586.364791

Norbert Wiener. Some moral and technical consequences of automation. Science, 131(3410):

1355–1358, 1960. ISSN 0036-8075. doi: 10.1126/science.131.3410.1355. URL https://

science.sciencemag.org/content/131/3410/1355.

Virginia Vassilevska Williams. Multiplying matrices in O(n2.373) time. 2014. URL https:

//people.csail.mit.edu/virgi/matrixmult-f.pdf.

D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. Trans.

Evol. Comp, 1(1):67–82, April 1997. ISSN 1089-778X. doi: 10.1109/4235.585893. URL

https://doi.org/10.1109/4235.585893.

Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with integers

in deep neural networks. CoRR, abs/1802.04680, 2018. URL https://arxiv.org/abs/1802.

04680.

Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent

types. In Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language

Design and Implementation, PLDI ’98, pages 249–257, New York, NY, USA, 1998. ACM.

ISBN 0-89791-987-4. doi: 10.1145/277650.277732. URL https://doi.acm.org/10.1145/

277650.277732.

Anqi Xu. Efficient Collaboration with Trust-seeking Robots. PhD thesis, McGill University

Libraries, 2017. URL http://www.cim.mcgill.ca/~anqixu/thesis/thesis.pdf.

Wojciech Zaremba. Learning Algorithms from Data. PhD thesis, New York University, 2016.

URL https://cs.nyu.edu/media/publications/zaremba_wojciech.pdf.

Wojciech Zaremba, Karol Kurach, and Rob Fergus. Learning to discover efficient mathemat-

ical identities. In Proceedings of the 27th International Conference on Neural Information

Processing Systems - Volume 1, NIPS’14, pages 1278–1286, Cambridge, MA, USA, 2014.

MIT Press. URL https://dl.acm.org/citation.cfm?id=2968826.2968969.

Christoph Zenger. Indexed types. Theoretical Computer Science, 187(1-2):147–165, No-

vember 1997. ISSN 0304-3975. doi: 10.1016/S0304-3975(97)00062-5. URL https:

//dx.doi.org/10.1016/S0304-3975(97)00062-5.

Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning testing: Survey,

landscapes and horizons. IEEE Transactions on Software Engineering, page 11, 2020.

ISSN 2326-3881. doi: 10.1109/tse.2019.2962027. URL http://dx.doi.org/10.1109/tse.2019.

2962027.

133

https://science.sciencemag.org/content/131/3410/1355
https://science.sciencemag.org/content/131/3410/1355
https://people.csail.mit.edu/virgi/matrixmult-f.pdf
https://people.csail.mit.edu/virgi/matrixmult-f.pdf
https://doi.org/10.1109/4235.585893
https://arxiv.org/abs/1802.04680
https://arxiv.org/abs/1802.04680
https://doi.acm.org/10.1145/277650.277732
https://doi.acm.org/10.1145/277650.277732
http://www.cim.mcgill.ca/~anqixu/thesis/thesis.pdf
https://cs.nyu.edu/media/publications/zaremba_wojciech.pdf
https://dl.acm.org/citation.cfm?id = 2968826.2968969
https://dx.doi.org/10.1016/S0304-3975(97)00062-5
https://dx.doi.org/10.1016/S0304-3975(97)00062-5
http://dx.doi.org/10.1109/tse.2019.2962027
http://dx.doi.org/10.1109/tse.2019.2962027

Zhi Quan Zhou and Liqun Sun. Metamorphic testing of driverless cars. Commun. ACM, 62

(3):61–67, February 2019. ISSN 0001-0782. doi: 10.1145/3241979. URL https://doi.acm.

org/10.1145/3241979.

Julian G. Zilly, Jacopo Tani, Breandan Considine, Bhairav Mehta, Andrea F. Daniele,

Manfred Diaz, Gianmarco Bernasconi, Claudio Ruch, Jan Hakenberg, Florian Golemo,

A. Kirsten Bowser, Matthew R. Walter, Ruslan Hristov, Sunil Mallya, Emilio Frazzoli,

Andrea Censi, and Liam Paull. The AI driving olympics at NeurIPS 2018. CoRR,

abs/1903.02503, 2019. URL https://arxiv.org/abs/1903.02503.

134

https://doi.acm.org/10.1145/3241979
https://doi.acm.org/10.1145/3241979
https://arxiv.org/abs/1903.02503

Appendix A

Type-safe differentiable programming

A.1. Grammar

Below is an approximately complete BNF grammar for Kotlin∇:

⟨type⟩ ::= Double | Float | Int | BigInteger | BigDouble

⟨nat⟩ ::= 1 | . . . | 99

⟨output⟩ ::= Fun<⟨type⟩Real> | VFun<⟨type⟩Real,⟨nat⟩> | MFun<⟨type⟩Real,⟨nat⟩,⟨nat⟩>

⟨int⟩ ::= 0 | ⟨nat⟩⟨int⟩

⟨float⟩ ::= ⟨int⟩.⟨int⟩

⟨num⟩ ::= ⟨type⟩(⟨int⟩) | ⟨type⟩(⟨float⟩)

⟨var⟩ ::= x | y | z | ONE | ZERO | E | Var()

⟨signOp⟩ ::= + | -

⟨binOp⟩ ::= ⟨signOp⟩ | * | / | pow

⟨trigOp⟩ ::= sin | cos | tan | asin | acos | atan | asinh | acosh | atanh

⟨unaryOp⟩ ::= ⟨signOp⟩ | ⟨trigOp⟩ | sqrt | log | ln | exp

⟨exp⟩ ::= ⟨var⟩ | ⟨num⟩ | ⟨unaryOp⟩⟨exp⟩ | ⟨var⟩⟨binOp⟩⟨exp⟩ | (⟨exp⟩)

⟨expList⟩ ::= ⟨exp⟩ | ⟨exp⟩,⟨expList⟩

⟨linOp⟩ ::= ⟨signOp⟩ | * | dot

⟨vec⟩ ::= Vec(⟨expList⟩) | Vec⟨nat⟩(⟨expList⟩)

⟨vecExp⟩ ::= ⟨vec⟩ | ⟨signOp⟩⟨vecExp⟩ | ⟨exp⟩*⟨vecExp⟩ | ⟨vec⟩⟨linOp⟩⟨vecExp⟩ |

⟨vecExp⟩.norm(⟨int⟩)

⟨mat⟩ ::= Mat⟨nat⟩x⟨nat⟩(⟨expList⟩)

⟨matExp⟩ ::= ⟨mat⟩ | ⟨signOp⟩⟨matExp⟩ | ⟨exp⟩⟨linOp⟩⟨matExp⟩ |

⟨vecExp⟩⟨linOp⟩⟨matExp⟩ | ⟨mat⟩⟨linOp⟩⟨matExp⟩

⟨anyExp⟩ ::= ⟨exp⟩ | ⟨vecExp⟩ | ⟨matExp⟩ | ⟨derivative⟩ | ⟨invocation⟩

⟨bindings⟩ ::= ⟨exp⟩ to ⟨exp⟩ | ⟨exp⟩ to ⟨exp⟩,⟨bindings⟩

⟨invocation⟩ ::= ⟨anyExp⟩(⟨bindings⟩)

⟨derivative⟩ ::= d(⟨anyExp⟩) / d(⟨exp⟩) | ⟨anyExp⟩.d(⟨exp⟩) | ⟨anyExp⟩.d(⟨expList⟩)

⟨gradient⟩ ::= ⟨exp⟩.grad()

136

Appendix B

Testing intelligent systems

B.1. Linear regression

Recall the matrix equation for linear regression (LR), where X : Rm×n and Θ : Rn×1:

f̂(X;Θ) = XΘ (B.1.1)

Imagine we are given the following dataset:

X =


x1

...

xm

 =


1 . . . x1n
...

1 . . . xmn

 ,Y =


y2
...

ym

 (B.1.2)

Our goal in ordinary least squares (OLS) LR is to minimize the loss, or error between the

data and the model’s prediction:

L(X,Y;Θ) = ||Y− f̂(X;Θ)||2 (B.1.3)

Θ∗ = argmin
Θ
L(X,Y;Θ) (B.1.4)

B.1.1. Finite difference method

First, we consider the scalar case, where f̂(X;Θ) = f̂(x; θ2, θ1) = θ2x + θ1. Since X,Y
are considered to be fixed, we can rewrite L(X,Y;Θ) as simply:

L(Θ) = L(θ2, θ1) =
1

m

m∑
i=1

(yi − (θ2xi + θ1))
2 (B.1.5)

To find the minimizer of L(Θ), we need∇ΘL = [∂L
∂θ2
, ∂L
∂θ1

]. There are various ways to compute

this. First, let’s see FDM with centered differences:

∂L
∂θ1

= lim
h→0

∑m
i=1 (yi − (θ2xi + θ1 + h))2 −

∑m
i=1 (yi − (θ2xi + θ1 − h))2

2hm
(B.1.6)

= lim
h→0

1

2hm

m∑
i=1

(yi − (θ2xi + θ1 + h))2 − (yi − (θ2xi + θ1 − h))2 (B.1.7)

∂L
∂θ2

= lim
h→0

∑m
i=1 (yi − ((θ2 + h)xi + θ1))

2 −
∑m

i=1 (yi − ((θ2 − h)xi + θ1))
2

2hm
(B.1.8)

= lim
h→0

1

2hm

m∑
i=1

(yi − ((θ2 + h)xi + θ1))
2 − (yi − ((θ2 − h)xi + θ1))

2 (B.1.9)

Using computer algebra, the above equations can be simplified considerably:

∂L
∂θ1

= lim
h→0

1

2hm

m∑
i=1

(4h(θ1 + θ2xi − yi)) (Eq. B.1.7 simplified)

=
2

m

m∑
i=1

(θ1 + θ2xi − yi) (B.1.10)

∂L
∂θ2

= lim
h→0

1

2hm

m∑
i=1

(4hxi(θ2xi + θ1 − yi)) (Eq. B.1.9 simplified)

=
2

m

m∑
i=1

(xi)(θ2xi + θ1 − yi) (B.1.11)

B.1.2. Partial differentiation

Alternatively, we can calculate the partials analytically, by applying the chain rule:

∂L
∂θ1

=
∂

∂θ1

1

m

m∑
i=1

(yi − (θ2xi + θ1))
2 (B.1.12)

=
1

m

m∑
i=1

2(yi − (θ2xi + θ1))
∂

∂θ1
(yi − (θ2xi + θ1)) (B.1.13)

=
2

m

m∑
i=1

(yi − (θ2xi + θ1))(−1) (B.1.14)

=
2

m

m∑
i=1

(θ2xi + θ1 − yi) (B.1.15)

138

https://www.wolframalpha.com/input/?i=(y_i-((%CE%B8_2%2Bh)x_i%2B%CE%B8_1))%5E2-(y_i-((%CE%B8_2-h)x_i%2B%CE%B8_1))%5E2
https://www.wolframalpha.com/input/?i=(y_i-(%CE%B8_2*x_i%2B%CE%B8_1%2Bh))%5E2%E2%88%92(y_i-(%CE%B8_2*x_i%2B%CE%B8_1-h))%5E2

∂L
∂θ2

=
∂

∂θ2

1

m

m∑
i=1

(yi − (θ2xi + θ1))
2 (B.1.16)

=
1

m

m∑
i=1

2(yi − (θ2xi + θ1))
∂

∂θ2
(yi − (θ2xi + θ1)) (B.1.17)

=
2

m

m∑
i=1

(yi − (θ2xi + θ1))(−xi) (B.1.18)

=
2

m

m∑
i=1

(xi)(θ2xi + θ1 − yi) (B.1.19)

Notice how analytical differentiation gives us the same answer as the finite difference method

(this is not by accident), with much less algebra. We can rewrite these two solutions in

gradient form, i.e. as a column vector of partial derivatives:

∇ΘL =

 ∂L
∂θ1

∂L
∂θ2

 =
2

m

 ∑m
i=1(θ2xi + θ1 − yi)∑m

i=1(xi)(θ2xi + θ1 − yi)

 (B.1.20)

B.1.3. Matrix solution

Having reviewed the scalar procedure for LR, let us now return to the general form of

L(Θ). Matrix notation allows us to simplify the loss considerably:

L(Θ) =
1

m
(Y−XΘ)⊺(Y−XΘ) (B.1.21)

=
1

m
(Y⊺Y−Y⊺XΘ−Θ⊺X⊺Y +Θ⊺X⊺XΘ) (B.1.22)

=
1

m
(Y⊺Y− 2Θ⊺X⊺Y +Θ⊺X⊺XΘ) (B.1.23)

Matrix notation allows us to derive the gradient and requires far less algebra:

∇ΘL(Θ) =
1

m
(∇ΘY⊺Y− 2∇ΘΘ

⊺X⊺Y +∇ΘΘ
⊺X⊺XΘ) (B.1.24)

=
1

m
(0− 2X⊺Y + 2X⊺XΘ) (B.1.25)

=
2

m
(X⊺XΘ−X⊺Y) (B.1.26)

139

For completeness, and to convince ourselves the matrix solution is indeed the same:

=
2

m


 1 . . . 1

x1 . . . xm


︸ ︷︷ ︸

X⊺


1 x1
... ...

1 xm


︸ ︷︷ ︸

X

θ1
θ2


︸ ︷︷ ︸

Θ

−

 1 . . . 1

x1 . . . xm


︸ ︷︷ ︸

X⊺


y1
...

ym


︸ ︷︷ ︸

Y


(B.1.27)

=
2

m


 m

∑m
i=1 xi∑m

i=1 xi
∑m

i=1 x
2
i


︸ ︷︷ ︸

X⊺X

θ1
θ2


︸ ︷︷ ︸

Θ

−

 ∑m
i=1 yi∑m
i=1 xiyi


︸ ︷︷ ︸

X⊺Y

 (B.1.28)

=
2

m


 mθ1 +

∑m
i=1 θ2xi∑m

i=1 θ1xi +
∑m

i=1 θ2x
2
i


︸ ︷︷ ︸

X⊺XΘ

−

 ∑m
i=1 yi∑m
i=1 xiyi


︸ ︷︷ ︸

X⊺Y

 (B.1.29)

=
2

m

 ∑m
i=1 θ2xi + θ1 − yi∑m

i=1(xi)(θ2xi + θ1 − yi)


︸ ︷︷ ︸

X⊺XΘ−X⊺Y

=

 ∂L
∂θ1

∂L
∂θ2

 = ∇ΘL(Θ) (B.1.30)

Notice how we recover the same solution obtained from partial differentiation and finite

difference approximation, albeit in a more compact form. For a good introduction to matrix

calculus, the textbook by Magnus and Neudecker [1988] is an excellent guide, of which

Petersen et al. [2012] offer a review of important identities.

OLS LR is a convex optimization problem. If X⊺X is invertible, i.e. full-rank, this implies

a unique solution Θ∗, which we can solve for directly by setting ∇ΘL = 0:

0 = X⊺XΘ−X⊺Y (B.1.31)

Θ = (X⊺X)−1X⊺Y (B.1.32)

Solving this requires computing (X⊺X)−1 which is at least O(n2.373)[Williams, 2014], i.e.

quadratic with respect to the number of input dimensions. Another way to find Θ∗ is by

initializing Θ← 0 and repeating the following procedure until convergence:

Θ′ ← Θ− α∇ΘL(Θ) (B.1.33)

140

Typically, α ∈ [0.001, 0.1]. Although hyperparameter tuning is required to find a suitable α

(various improvements like Nesterov momentum [Nesterov, 2013] and quasi-Newton methods

also help to accelerate convergence), this procedure is guaranteed to be computationally

more efficient than matrix inversion for sufficiently large m and n. In practice, the normal

equation Eq. B.1.31 is seldom used unless m is very small.

B.2. Polynomial regression

B.2.1. Univariate PR

Polynomial regression is a straightforward application of LR, in which we approximate

the coefficients for each term in a scalar polynomial. Consider the univariate case:

yi = β0 + β1xi + β2x
2
i + · · ·+ βmx

m
i =

m∑
j=0

βjx
j
i (B.2.1)

We can rewrite this function in matrix form as follows:

y1

y2

y3
...

yn


=



1 x1 x21 . . . xm1

1 x2 x22 . . . xm2

1 x3 x23 . . . xm3
...

1 xn x2n . . . xmn





β0

β1

β2
...

βm


(B.2.2)

f̂(X;β) = Xβ (B.2.3)

The resemblance to Eq. B.1.1 should be clear. To find β minimizing L(X,Y;β), we can use

the same method described in § B.1.3. Here, x,y ∈ Rn, where (xi, yi) correspond to scalar

points in our dataset of size n. The matrix X ∈ Rn×m represents a feature map, φ : R→ Rm,

applied elementwise to each input value xi in our dataset, where φ(xi) = [1, x2i , . . . , x
m
i].

B.2.2. Multivariate PR

In multivariate PR, we need coefficients for all pairwise interactions between every vari-

able and every other at every degree of the polynomial. Consider the bivariate case:

yi(w,x) = 1+βxx+βww+βxwxw+βx2x2+βw2w2+βxw2xw2+ · · ·+βwmxmwmxm (B.2.4)

141

This requires at least (n×m× 2) terms. Minimizing β on this expression directly becomes

intractable as the maximum degree m, dataset size n and the number of variables grows.

B.2.3. Kernel trick

Instead of modeling X explicitly, let us construct a special function k : ⟨φ(x), φ(w)⟩ 7→ R,

where k(w,x) = (1+w⊺x)2. Called a kernel, this function is part of a well-studied family of

kernel functions, K : Ω×Ω→ R with some additional structure. Skimming over the details,

a valid kernel preserves the inner product in our feature space. For simplicity, let w,x ∈ R2.

Suppose we have a feature map φ(v) =
[
1, v21, v

2
2,
√
2v1,
√
2v2,
√
2v1v2

]
. We observe:

k(w,x) = φ(w)φ(x) (B.2.5)

= [1, w2
1, w

2
2,
√
2w1,

√
2w2,

√
2w1w2]



1

x21

x22√
2x1
√
2x2

√
2x1x2


(B.2.6)

= 1 + w2
1x

2
1 + w2

2x
2
2 + 2w1x1 + 2w2x2 + 2w1w2x1x2 (B.2.7)

By expanding the kernel k(w,x) as follows:

k(w,x) = (1 + w⊺x)2 = (1 + w1 x1 + w2 x2)
2 (B.2.8)

= 1 + w2
1x

2
1 + w2

2x
2
2 + 2w1x1 + 2w2x2 + 2w1w2x1x2 (B.2.9)

We recover Eq. B.2.5 without directly using φ. This is called the kernel trick, a widely used

technique in many areas of machine learning.

142

Appendix C

Tools for reproducible robotics

C.1. Useful Docker resources

The following resources have proven particularly helpful during the development of Duck-

ietown’s container infrastructure.

C.1.1. Balena

Balena is a very good source of base images for ARM devices. The best part of using

Balena images, is that they can be rebuilt on x86 devices, such as a laptop or cloud server.

Baked into every Balena image is a shim for the shell that will allow users to run ARM

binaries on x86 from inside a container. To use this feature, the following Dockerfile

template is provided:

FROM balena/BASE_IMAGE # e.g. raspberrypi3-python

RUN ["cross-build-start"]

ARM-specific code goes here...

RUN ["cross-build-end"]

CMD <DEFAULT_START_COMMAND>

Balena uses QEMU [Bellard, 2005] to cross-build images.1 When running an ARM image,

simply use the qemu-arm-static binary as a custom entrypoint:

 docker run ȂƖentrypoint=qemu-arm-static -it your/arm-image bash

1https://www.balena.io/blog/building-arm-containers-on-any-x86-machine-even-dockerhub/

https://www.balena.io/
https://www.qemu.org/
https://www.balena.io/blog/building-arm-containers-on-any-x86-machine-even-dockerhub/

C.1.2. ROS Docker Images

ROS.org builds nightly ARM and x86 images for robotics development. For each distribu-

tion, there are packages like core, base, perception (including OpenCV), robot and others.

C.1.3. Hypriot

Hypriot, a base OS for RPi and other ARM devices, includes support for Docker straight

out of the box. Hypriot is a lightweight Raspbian-based Linux distribution which builds

from the latest Raspberry Pi kernels and Raspbian releases.

C.1.4. PiWheels

Not all Python packages (especially if they wrap a native library) can be run on all

platforms. One might be tempted to build some package from its sources (and in rare cases,

they might need to do so). But there is a good chance the package has already been compiled

for Raspberry Pi on PiWheels. By using the following command (either in a Dockerfile or

via the CLI), various Python packages may be installed, e.g. opencv-python:

 pip install opencv-python --index-url https://www.piwheels.org/simple

C.1.5. Docker Hub

Docker Hub is the central repository for Docker Images. Unless a separate registry has

been configured, whenever users pull a Docker image tag, it will first query the Docker Hub

for a matching image. The Docker Hub can be used to upload Docker images, and configure

144

https://hub.docker.com/_/ros
https://opencv.org/
https://blog.hypriot.com/
https://github.com/hypriot/image-builder-rpi
https://www.piwheels.org/
https://hub.docker.com/

automated builds from GitHub (with a two hour build timeout). Docker Hub does not

support layer caching of any kind, so the build will always take a fixed amount of time.

Docker Hub auto-builds support linking a Dockerfile in a GitHub repository, and whenever

that Dockerfile changes, the Docker image will be updated.

The Docker Hub also has features for configuring repository links and build triggers.

These will automatically rebuild downstream Docker images whenever some event occurs.

Repository links allow support chaining builds together across Docker Hub repositories.

Whenever a linked repository is updated, the dependent image will be rebuilt.

145

C.1.6. Docker Cloud

Docker Cloud is a Docker registry which is fully integrated with the Docker Hub. Builds

are automatically published from Docker Cloud to Docker Hub. Notifications for email and

Slack, as well as longer build timeouts (up to 4-hours) are supported. Docker Cloud also

supports more advanced build options than Docker Hub, such as a configurable build context

and cache settings.

146

https://cloud.docker.com/

	Abstract
	Résumé
	Acknowledgements
	Contents
	List of tables
	List of figures
	Chapter 1. Introduction
	1.1. Design: Programming tools for robotics
	1.2. Implementation: Type-safe differentiable programming
	1.3. Verification: Testing intelligent systems
	1.4. Maintenance: Tools for reproducible robotics
	1.5. Contributions
	1.6. Iconography

	Chapter 2. Programming tools for robotics
	2.1. Introduction to the Robot Operating System
	2.2. Installation
	2.3. Plugin development
	2.3.1. Refactoring
	2.3.2. Parsing
	2.3.3. Running and debugging
	2.3.4. User interface

	2.4. Ongoing work
	2.5. Future work
	2.6. Conclusion

	Chapter 3. Type-safe differentiable programming
	3.1. Automatic differentiation
	3.2. Differentiable programming
	3.3. Static and dynamic languages
	3.4. Imperative and functional languages
	3.5. Kotlin
	3.6. Kotlin
	3.7. Usage
	3.8. Type systems
	3.9. Shape safety
	3.10. Testing
	3.11. Operator overloading
	3.12. First-class functions
	3.13. Numeric tower
	3.14. Algebraic data types
	3.15. Multiple dispatch
	3.16. Extension functions
	3.17. Automatic, symbolic differentiation
	3.18. Coroutines
	3.19. Comparison
	3.20. Future work
	3.21. Conclusion

	Chapter 4. Testing intelligent systems
	4.1. Background
	4.1.1. Unit testing
	4.1.2. Integration testing
	4.1.3. Fuzz testing
	4.1.4. Property-based testing
	4.1.5. Metamorphic testing
	4.1.6. Adversarial testing
	4.1.7. Generative adversarial testing

	4.2. Probabilistic adversarial testing
	4.3. Conclusion

	Chapter 5. Tools for reproducible robotics
	5.1. Dependency management
	5.2. Operating systems and virtualization
	5.3. Containerization
	5.4. Introduction to Docker
	5.4.1. Creating an image snapshot
	5.4.2. Writing an image recipe
	5.4.3. Layer caching
	5.4.4. Volume sharing
	5.4.5. Multi-stage builds

	5.5. ROS and Docker
	5.6. Duckiebot development using Docker
	5.6.1. Flashing a bootable disk
	5.6.2. Web interface
	5.6.3. Testing ROS
	5.6.4. Build and deployment
	5.6.5. Multi-architecture support
	5.6.6. Running a simple HTTP file server
	5.6.7. Camera testing
	5.6.8. Graphical user interface tools
	5.6.9. Remote control
	5.6.10. Camera calibration
	5.6.11. Wheel calibration
	5.6.12. Lane following

	5.7. Retrospective
	5.7.1. Remarks on security

	5.8. Future work
	5.9. Conclusion

	Chapter 6. Conclusion
	6.1. Contributions

	References
	Appendix A. Type-safe differentiable programming
	A.1. Grammar

	Appendix B. Testing intelligent systems
	B.1. Linear regression
	B.1.1. Finite difference method
	B.1.2. Partial differentiation
	B.1.3. Matrix solution

	B.2. Polynomial regression
	B.2.1. Univariate PR
	B.2.2. Multivariate PR
	B.2.3. Kernel trick

	Appendix C. Tools for reproducible robotics
	C.1. Useful Docker resources
	C.1.1. Balena
	C.1.2. ROS Docker Images
	C.1.3. Hypriot
	C.1.4. PiWheels
	C.1.5. Docker Hub
	C.1.6. Docker Cloud

