
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Syntax Repair as Language Intersection

ANONYMOUS AUTHOR(S)

We introduce a new technique for repairing syntax errors in arbitrary context-free languages. This technique
models syntax repair as a language intersection problem by defining a finite language that provably generates
every syntactically valid repair within a given edit distance. Leveraging a theoretical connection between
the Bar-Hillel construction from formal language theory and CFL reachability from program analysis, we
show that repairability in a finite number of typographic edits is polylogarithmic parallel time decidable and
provide an enumeration algorithm based on the Brzozowski derivative. Finally, we evaluate this algorithm
and its implementation, demonstrating state-of-the-art results on a Python syntax repair benchmark.

1 INTRODUCTION
When programming, one invariably encounters a recurring scenario in which the editor occupies an
unparseable state. Faced with this predicament, programmers must spend time to locate and repair
the error before proceeding. In the following paper, we propose to solve this problem automatically
by generating a short list of suggestions that anticipate with high probability the author’s intended
repair, assuming this repair differs by no more than a few edits from the broken source code.

Prior research on syntax repair can be classified into exact and approximate methods. In the
former, specialized parsers with error recovery rules are used to propose a single, least-cost repair.
While appealing for their interpretability andwell-understood algorithmic properties, thesemethods
are unable to handle ambiguity and must rely on relatively brittle heuristics to select the repair.

In the latter case, the set of all strings is typically used as the sample space for a distribution
whose parameters are learned from a dataset of pairwise errors and fixes. Though statistically more
robust, these methods typically use some form of approximate inference and thus require expensive
postprocessing or rejection sampling to ensure the generated results conform to the grammar.

The primary shortcoming with both approaches is they generate far too few repairs. As we
will show, even if the repair model guarantees correctness or has good statistical generalization
properties, it is likely to miss the intended repair in ambiguous scenarios or when there are many
candidates from which to choose. Most syntax errors, however, require only a few typographic
modifications to repair, of which there are only a finite number of possibilities to consider.

Thus we arrive at the core problem this paper aims to solve: how can we quickly recover the most
probable repairs in proximity to a syntactically broken code snippet? To address this problem, we
propose to extensively evaluate the probability of every repair within a fixed edit distance. At first,
this might seem to take much longer than generating a single repair, but if we intend to quickly
generate probable repairs and not just valid ones, extensive search becomes highly advantageous.
To ensure the search space is well-defined, we will construct and decode a regular expression that
generates all and only valid repairs within a fixed edit distance, thereby avoiding rejection sampling
entirely without skipping any nearby valid repairs. This construction is shown in Fig. 1.

)

)

Syntax																																												CNF	grammar								

S	→	()	|	(S)	|	S	S

Source																				Edit	automaton	

()) ⟶

⟶ S	→	L	R	
S	→	L	F
L	→	(

F	→	S	R	
S	→	S	S
R	→) ⟶

⟶

⟶

Regular	expression

⟶⟶
1. 	(())
2. 	() ()
3. 	()
…

Sampled	repairs

() ()
)))
 ())
 ...
 (()
 (())

⟶

Decoder

∂□E
+

P(xt	|	xt-1,	…	,	xt-c)

Completed	Parse	Matrix
∨

∨ ∨

· · ·

∨ ∨

·

∨ ∨

{Σ₀} {Σ₁}

·

∨ ∨

{Σ₀} {Σ₁}

∨ ∨

{Σ₀} {Σ₁}

∨ ∨

{Σ₀} ·

∨ ∨

·

∨ ∨

{Σ₀} {Σ₁}

{Σ₁}

· ·

∨ ∨

·

∨ ∨

{Σ₀} {Σ₁}

·

∨ ∨

{Σ₀} {Σ₁}

∨ ∨

{Σ₀} ·

∨ ∨

·

∨ ∨

{Σ₀} {Σ₁}

{Σ₁}

⟶
1. 	()
2. 	() ()

					(truncated	@	k=2)

Reranked	repairs

ó

Fig. 1. Our algorithm first constructs an automaton representing all strings within a certain edit distance.
This automaton is parsed into a matrix denoting all valid repairs in the programming language and edit
distance. We construct a regular expression (RE) from the matrix, and finally decode the RE using an n-gram
model to produce a finite list of samples, then rerank and truncate this list to obtain our final repairs.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

To operationalize this technique, we design, develop and benchmark a new developer tool for
syntax repair which is readily executable on multicore CPUs and GPUs. We provide a reference
implementation of our tool and show these parallel computing resources, which typically sit idle
during text editing, can be profitably used to accelerate real-time program repair.

Finally, we show the efficacy of this technique for locating and repairing syntax errors of up to
three edits and eighty lexical tokens in under ten seconds, practical for a few lines of source code in
realistic programming languages. Our work shows this technique is highly effective at predicting
the human repair across a dataset of Python source code, up to 5x more accurately than previous
state-of-the-art methods at comparable latency and compute thresholds.

2 BACKGROUND
Recall that a CFG, G = 〈Σ,+ , %, (〉, is a quadruple consisting of terminals (Σ), nonterminals (+),
productions

(
% : + → (+ | Σ)+

)
, and a start symbol, ((). Every CFG is reducible to so-called

Chomsky Normal Form [15], % ′ : + → (+ 2 | Σ), where every production is either (1) a binary
productionF → GI, or (2) a unit productionF → C , whereF, G, I : + and C : Σ. For example:

� =
{
(→ ((| (() | ()

}
=⇒ � ′ =

{
(→ & ' | ((| ! ', ' →), ! → (, & → ! (

}
Likewise, a finite state automaton (FSA) is a quintuple A = 〈&, Σ, X, @U , � 〉, where & is a finite

set of states, Σ is a finite alphabet, X ⊆ & × Σ ×& is the transition function, @U is the initial state,
and � ⊆ & are the accepting states. These generally come in two varieties, deterministic and
nondeterministic depending on whether or not X maps each pair 〈@, B〉 to a unique @′.

There is an equivalent characterization of the regular languages via an inductively defined
datatype, which is often more elegant than FSAs to work with. Consider the generalized regular
expression (GRE) fragment containing concatenation, conjunction and disjunction:

Definition 2.1 (Star-free GRE fragment). Let 4 : � be an expression defined by the grammar:

4 → ∅ | Y | Σ | 4 · 4 | 4 ∨ 4 | 4 ∧ 4
where Y is the empty symbol. Semantically, we interpret these expressions as denoting languages:

L(∅) = ∅
L(Y) = {Y}
L(0) = {0}

L(G · I) = L(G) ◦ L(I)1

L(G ∨ I) = L(G) ∪ L(I)
L(G ∧ I) = L(G) ∩ L(I)

Brzozowski [9] introduces an operator, m : � × Σ→ �, which quotients a language by some prefix,

Definition 2.2 (Brzozowski, 1964). To compute the quotient m0 (!) = {1 | 01 ∈ !}, we:

m0 (∅) = ∅
m0 (Y) = ∅

m0 (1) =
{
Y if 0 = 1

∅ if 0 ≠ 1

m0 (G · I) = (m0G) · I ∨ X (G) · m0I
m0 (G ∨ I) = m0G ∨ m0I

m0 (G ∧ I) = m0G ∧ m0I

X (∅) = ∅
X (Y) = Y

X (0) = ∅

X (G · I) = X (G) ∧ X (I)
X (G ∨ I) = X (G) ∨ X (I)
X (G ∧ I) = X (G) ∧ X (I)

1Where L(G) ◦ L(I) is defined as
{
0 · 1 | 0 ∈ L(G) ∧ 1 ∈ L(I)

}
.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Syntax Repair as Language Intersection 3

Primarily, this gadget was designed to handle membership queries, for which purpose it has
found a number of applications [38, 49, 53] in recent years:

Theorem 2.3 (Recognition). For any regex 4 and f : Σ∗, f ∈ L(4) ⇐⇒ Y ∈ L(mf4), where:

mf (4) : � → � =

{
4 if f = Y

m1 (m04) if f = 0 · 1, 0 ∈ Σ, 1 ∈ Σ∗
(1)

Variations on this basic procedure can also be used for functional parsing and regular expression
tasks. Less well known, perhaps, is that Brzozowski’s derivative can also be used to decode witnesses.
We will first focus on the nonempty disjunctive fragment, and define this process in two steps:

Theorem 2.4 (Generation). For any nonempty (Y,∧)-free regex, 4 , to witness f ∈ L(4):

follow(4) : � → 2Σ =

{4} if 4 ∈ Σ
follow(G) if 4 = G · I
follow(G) ∪ follow(I) if 4 = G ∨ I

(2)

choose(4) : � → Σ+ =

4 if 4 ∈ Σ(
B

$← follow(4)
)
· choose(mB4) if 4 = G · I

choose
(
4′

$← {G, I}
)

if 4 = G ∨ I
(3)

Here, we use the
$← operator to denote probabilistic choice, however, any deterministic choice

function will also suffice to generate a witness. Now we are equipped to handle conjunction.
Recall that every regular language is also context-free a fortiori. So, given an (Y,∧)-free regular

expression, we can construct an equivalent CFG with productions % (4) as follows:

% (4) : � →
(
+ → (Σ | + | + 2)

)
=

{(4 → 4} if 4 ∈ Σ
% (G) ∪ % (I) ∪ {(4 → (G(I} if 4 = G · I
% (G) ∪ % (I) ∪ {(4 → (G , (4 → (I} if 4 = G ∨ I

(4)

where the CFG is� (4) = 〈+ , Σ, % (4), (4〉 with + being nonterminals in % (4). Therefore, to intersect
two regular languages, we can treat one of them as a CFL. Alternatively, we can take the intersection
between some truly non-regular CFL (say, a programming language syntax) and a regular language.

Theorem 2.5 (Bar-Hillel, 1961). For any CFG, � = 〈+ , Σ, %, (〉, and nondeterministic finite
automata (NFA),� = 〈&, Σ, X, @U , � 〉, there is a CFG,�∩ = 〈+∩, Σ∩, %∩, (∩〉 s.t. L(�∩) = L(�) ∩L(�).

Salomaa [47] introduces a direct, but inefficient construction for the intersection grammar:

Definition 2.6 (Salomaa, 1973). One could construct �∩ like so,

@l ∈ � S(
(→ @U(@l

)
∈ %∩

(F → 0) ∈ % (@ 0→ A) ∈ X
↑(

@FA → 0
)
∈ %∩

(F → GI) ∈ % ?, @, A ∈ &
Z(

?FA → (?G@) (@IA)
)
∈ %∩

however, most synthetic productions in %∩ will be non-generating or unreachable. This method
will construct a synthetic production for state pairs that are not even connected by any path, which
is clearly excessive. In § 3, we will present a far more efficient construction for the special case
when the intersection is finite. But first, let us return to the broader question of syntax repair.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

2.1 Informal statement
Assume there exists a transducer from Unicode tokens to grammatical tokens, C : Σ∗

*
→ Σ∗

�
. In the

compiler nomenclature, C is called a lexer and would typically be regular under mild conditions. In
this paper, we do not consider C and strictly deal with languages over Σ∗

�
, or simply Σ∗ for brevity.

Now suppose we have a syntax, ℓ ⊂ Σ∗, containing every acceptable program. A syntax error is
an unacceptable string, f

:
∉ ℓ , that we wish to repair. We can model syntax repair as a language

intersection between a context-free language (CFL) and a regular language. Henceforth, f
:
will

always and only be used to denote a syntactically invalid string whose intended language is known.

f
:

31 32 33 34

L
(
!(f

:
, 3∗ + 1)

)
L(�)

ℓ∩

Fig. 2. CFL intersection with the local edit
region around a broken code snippet, where
3∗ = 3 is the language edit distance (LED).

Given a lexical representation of a broken computer
program f

:
and a grammar � , our goal is to find every

valid string f consistent with the grammar � and within
a certain edit distance,3 . Consider the language of nearby
strings: if intersected with the language of grammatically
valid programs, L(�), the result (ℓ∩) will contain every
possible repair within the given edit distance, a subset
of which will be natural or statistically probable. If we
can locate these repairs, then we can map them back into
Unicode, adding placeholders for fresh names, numbers,
and string literals, then finally apply an off-the-shelf code
formatter to display them. Both the preprocessing and
the cosmetic postprocessing steps are tangential to this
work, in which we confine ourselves to a lexical alphabet.

2.2 Formal statement
Let us now restate our informal description of the syntax repair problem in more formal terms.

Definition 2.7 (Bounded Levenshtein-CFL reachability). Given a CFL, ℓ , and an invalid string, f
:
: ℓ̄ ,

find every valid string reachable within 3 edits of f
:
, i.e., letting Δ be the Levenshtein metric and

L
(
!(f

:
, 3)

)
= {f ′ | Δ(f

:
, f ′) ≤ 3} be the Levenshtein 3-ball, we seek to find ℓ∩ = L

(
!(f

:
, 3)

)
∩ ℓ .

As the intersection language, ℓ∩, typically contains a large number of possible repairs, we want a
procedure that surfaces both natural and valid repairs over unnatural but valid repairs:

Definition 2.8 (Ranked repair). Given a finite language ℓ∩ = L
(
!(f

:
, 3)

)
∩ ℓ and a probabilistic

language model P\ : Σ∗ → [0, 1] ⊂ R, find the top-: maximum probability repairs. That is,

'(ℓ∩, %\) : 2Σ
∗ × (Σ∗ → R) → (Σ∗)≤: = argmax

2⊆ℓ∩, |2 | ≤:

∑
f∈2

P\ (f) (5)

A popular approach to ranked repair involves learning a distribution over strings, however, this
is highly sample-inefficient and generalizes poorly to new languages. Approximating a distribution
over Σ∗ forces themodel to jointly learn syntax and stylometry. Furthermore, evenwith an extremely
efficient approximate sampler for f ∼ ℓ∩, due to the size of the languages involved, it would be
intractable to sample either ℓ or L

(
!(f

:
, 3)

)
, reject duplicates, then reject unreachable or invalid

edits, and completely out of the question to sample f ∼ Σ∗ as do most neural language models.
As we will demonstrate, the ranked repair problem can be factorized into three subproblems:

(1) exact representation, (2) decoding and (3) reranking. Instead of working with strings, we will
explicitly construct a grammar which soundly and completely generates ℓ∩L

(
!(f

:
, 3)

)
, then decode

repairs from its language. By ensuring decoding is sufficiently precise and extensive, ensuring the
retrieved set contains the true repair can be achieved with a much simpler, syntax-oblivious model.
Finally, we will train a language model to rerank the repair candidates and take the top-: results.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Syntax Repair as Language Intersection 5

3 METHOD
The key to solving this problem is to treat finite language intersections as matrix exponentiation,
exploiting a correspondence between the Bar-Hillel construction and CFL reachability. We show
that if one of the participants in the language intersection is presented as an acyclic FSA, the finite
intersection nonemptiness problem is polylogarithmic parallel time decidable. Formally,

Theorem 3.1. For any CFG,� = 〈+ , Σ, %, (〉, and acyclic NFA (ANFA),� = 〈&, Σ, X, @U : &, � ⊆ &〉,
there exists a decision procedure Ψ : CFG→ ANFA→ B such that Ψ(�,�) |= [L(�) ∩ L(�) ≠ ∅]
requiring O

(
log2 |& | + log |& | |+ |

)
time using O

(
|& |2 |+ |

)
parallel random access (PRAM) processors.

Proof. To prove nonemptiness, we must show there exists a path @U @l in� such that @l : �
where @U @l ` (. At least one of two cases must hold forF ∈ + to parse a given ? A pair:

(1) ? steps directly to A in which case it suffices to check ∃0.
(
(? 0→ A) ∈ X ∧ (F → 0) ∈ %

)
, or,

(2) there is some midpoint @ ∈ & , ? @ A such that ∃G, I.
(
(F → GI) ∈ % ∧

F︷ ︸︸ ︷
? @︸ ︷︷ ︸

G

, @ A︸︷︷︸
I

)
.

This decomposition immediately suggests a dynamic programming solution. Let M be a matrix of
type � |& |× |& |× |+ | indexed by & . Since we assumed X is acyclic, there exists a topological sort of X
imposing a total order on & such that " is strictly upper triangular (SUT). Note & can be ordered
topologically in O(log2 |& |) time [16] using matrix multiplication. We initialize " thusly:

"0 [A, 2,F] =
∨
0∈Σ

{
0 | (F → 0) ∈ % ∧ (@A

0→ @2) ∈ X
}

(6)

Now, our goal will be to find " = "2 such that
[
"0 [A, 2,F] ≠ ∅

]
=⇒

[
" [A, 2,F] ≠ ∅

]
under

a certain near-semiring. The algebraic operations ⊕, ⊗ : �2 |+ | → � |+ | we will define elementwise:

[ℓ ⊕ A]F = [ℓF ∨ AF] and [ℓ ⊗ A]F =
∨

G,I ∈ +

{
ℓG · AI | (F → GI) ∈ %

}
. (7)

By slight abuse of notation,2 we will redefine the matrix exponential over this domain as,

exp(") =
∞∑
8=0

"8
0 =

|& | |+ |∑
8=0

"8
0 (since "0 is SUT and thus nilpotent). (8)

While |& | |+ | is an upper-bound and exp(") may converge sooner, incremental evaluation grows
expensive even with unbounded parallelism. Instead, we will use exponentiation-by-squaring:

2=∑
8=0

"8
0 =) (2=) =

{
"0, if = = 1,

) (=) +) (=)2 otherwise.
(9)

Therefore, the complexity can be reduced to at most dlog2 |& | |+ |e sequential steps in the limit.
Finally, we will union all the languages of every state pair deriving (into a new nonterminal, (∩.

(∩ =
∨
@l ∈�

exp(") [@U , @l , (], and Ψ = [(∩ ≠ ∅] . (10)

Note that it is possible to check Ψ before each recurrence of) and escape immediately thereafter
in the positive case. Optimistically, this can occur in Ω(log2 ?∗) time, where ?∗ is the length of
the shortest path through X , ?∗ = min@l ∈� |@U @l |. In case of nonemptiness, one may simply
choose((∩) (see Eq. 3) to decode a witness f ∈ L(�) ∩L(�). In either case, the decision procedure
terminates in O(log2 |& | + log |& | |+ |) parallel time with O(|& |2 |+ |) processors. �
2Customarily, there is a 1

:! factor to modulate exploding values, but alas this domain has no multiplicative inverse.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

4 EXAMPLES
In this section, we will consider three examples of intersections with finite languages. First, parsing
can be viewed as a special case of intersection with a singleton language. Second, we will introduce
completion as an intersection that admits terminal wildcards in fixed locations. Thirdly, we consider
syntax repair, where we will intersect a language representing all possible edit paths within a
certain distance to determine the location(s) and fill them with the appropriate terminal(s).

4.1 Recognition as intersection
In the case of ordinary CFL recognition, the automaton forms a single row and accepts one word:

@0,0 @1,0 . . . @=,0
f1 f2 f=

Since the word is predetermined, we just need to keep track of nonterminal subsets for each
substring. So, given a CFG, � ′ : G in Chomsky Normal Form (CNF), we can construct a recognizer
for strings f : Σ= as follows. Let 2+ be our domain, 0 be ∅, ⊕ be ∪, and ⊗ be defined as:

- ⊗ / =
{
F | 〈G, I〉 ∈ - × /, (F → GI) ∈ %

}
(11)

If we define f̂A = {F | (F → fA) ∈ %}, then construct a matrix with nonterminals on the
superdiagonal representing each token, "0 [A + 1 = 2] (� ′, f) = f̂A , the fixpoint "8+1 = "8 +"2

8 is
uniquely determined by the superdiagonal entries. Omitting the exponentiation-by-squaring detail,
the ordinary fixedpoint iteration simply fills successive diagonals:

"0 =

©«
∅ f̂1 ∅ ∅

∅
f̂=

∅ ∅

ª®®®®®¬
, "1 =

©«
∅ f̂1 Λ ∅

Λ
f̂=

∅ ∅

ª®®®®®¬
, . . . , "∞ =

©«
∅ f̂1 Λ Λ∗f

Λ
f̂=

∅ ∅

ª®®®®®¬
Once the fixpoint "∞ is attained, the proposition [(∈ Λ∗f] 3 decides language membership, i.e.,
[f ∈ L(�)]. So far, this procedure is essentially the textbook CYK algorithm in a linear algebraic
notation [25] and a well-established technique in the parsing literature [26].

4.2 Completion as intersection
Let us now consider a problem of intermediate difficulty, wherein we are given a string template
admitting edits at fixed locations, which can be filled by any terminal. When intersected with a
CFL, this specifies a finite language whose contents are the set of all words consistent with the
template. This problem we call completion. Formally,

Definition 4.1 (Completion). Let Σ = Σ ∪ {_}, where _ denotes a hole. We denote v: Σ= × Σ= as
the relation {〈f ′, f〉 | f8 ∈ Σ =⇒ f ′8 = f8 } and the set of all inhabitants {f ′ : Σ+ | f ′ v f} as H(f).
Given a porous string, f : Σ∗ we seek all syntactically valid inhabitants, i.e., �(f) = H(f) ∩ ℓ .

Here, the FSA takes a similar shape but can have multiple arcs between adjacent states, e.g.:

@0,0 @1,0 @2,0 @3,0
f1

. . .
Σ1

Σ=

. . .
Σ1

Σ=

3Hereinafter, we use Iverson brackets to denote the indicator function of a predicate with free variables, i.e., [%] ⇔ 1(%) .

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Syntax Repair as Language Intersection 7

This corresponds to a template with two holes, f = 1 _ _. Suppose the context-free grammar is
� = {(→ #$#,$ → + | ×, # → 0 | 1}. This grammar will first be rewritten into CNF as
� ′ = {(→ #!, # → 0 | 1,$ → × | +, ! → $# }. Using the powerset algebra we just defined, the
matrix fixpoint " ′ = " +"2 can be computed as follows, shown in the leftmost column below:

2+ Z |+ |2 GRE |+ |

"0

©«
{# }

{#,$}
{#,$}

ª®®®®®¬
©«

!
�

#
�

$
�

(
�

����

����

ª®®®®®¬
©«

�0,1

�1,2

�2,3

ª®®®®®¬
"1

©«
{# } ∅

{#,$} {!}
{#,$}

ª®®®®®¬
©«

���� ����

���� ����

����

ª®®®®®¬
©«

�0,1 �0,2

�1,2 �1,3

�2,3

ª®®®®®¬
"2

=

"∞

©«
{# } ∅ {(}

{#,$} {!}
{#,$}

ª®®®®®¬
©«

���� ���� ����

���� ����

����

ª®®®®®¬
©«

�0,1 �0,2 �0,3

�1,2 �1,3

�2,3

ª®®®®®¬
The same procedure can be translated, without loss of generality, into the bit domain (Z |+ |2)

using a lexicographic nonterminal ordering, however"∞ in both 2+ and Z |+ |2 represents a decision
procedure, i.e.,

[
(∈ "∞ [0, 3]

]
⇔

[
"∞ [0, 3, 3] = �

]
⇔

[
�(f) ≠ ∅

]
. Since "∞ [0, 3] = {(}, we

know there is at least one f ′ ∈ �(f), but neither "∞ in 2+ or Z+2 lets us recover a witness.
To witness f ′ ∈ �(f), we can translate the matrix exponential to the GRE domain. We first define

- ⊗ / = [-2 · /1,∅,∅, -1 · /0] and - ⊕ / = [-8 ∨ /8]8∈[0, |+ |) , mirroring ⊕, ⊗ from the powerset
domain. Since the unit nonterminals $, # can only occur on the superdiagonal, they may be safely
ignored by ⊗. To solve for "∞, we proceed by first computing �0,2, �1,3:

�0,2 = �0, 9 · � 9,2 = �0,1 ⊗ �1,2 �1,3 = �1, 9 · � 9,3 = �1,2 ⊗ �2,3
= [! ∈ �0,2,∅,∅, (∈ �0,2] = [! ∈ �1,3,∅,∅, (∈ �1,3]
= [$ ∈ �0,1 · # ∈ �1,2,∅,∅, # ∈ �0,1 · ! ∈ �1,2] = [$ ∈ �1,2 · # ∈ �2,3,∅,∅, # ∈ �1,2 · ! ∈ �2,3]
= [�0,1,2 · �1,2,1,∅,∅, �0,1,1 · �1,2,0] = [�1,2,2 · �2,3,1,∅,∅, �1,2,1 · �2,3,0]

Now we solve for the corner entry �0,3 by dotting the first row and last column, which yields:

�0,3 = �0, 9 · � 9,3 = (�0,1 ⊗ �1,3) ⊕ (�0,2 ⊗ �2,3)
= [�0,1,2 · �1,3,1 ∨ �0,2,2 · �2,3,1,∅,∅, �0,1,1 · �1,3,0 ∨ �0,2,1 · �2,3,0]

Since we only care about �0,3,3 ⇔ [(∈ �0,3], we can ignore the first three entries and solve for:

�0,3,3 = �0,1,1 · �1,3,0 ∨ �0,2,1 · �2,3,0
= �0,1,1 · (�1,2,2 · �2,3,1) ∨ �0,2,1 ·∅
= �0,1,1 · �1,2,2 · �2,3,1

(
= [# ∈ �0,1] · [$ ∈ �1,2] · [# ∈ �2,3]

)
= 1 · {+,×} · {0, 1}

Finally, to recover a witness, we can simply choose
(
1 · {+,×} · {0, 1}

)
(see Eq. 3).

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

4.3 Repair as intersection
Now, we are ready to consider the general case of syntax repair, in which case the edit locations
are not localized but can occur anywhere inside the snippet. In this case, we construct a lattice of
all possible edit paths up to a fixed distance. This structure is called a Levenshtein automaton.

@0,0 @1,0 @2,0 @3,0 @4,0 @5,0

@0,1 @1,1 @2,1 @3,1 @4,1 @5,1

@0,2 @1,2 @2,2 @3,2 @4,2 @5,2

@0,3 @1,3 @2,3 @3,3 @4,3 @5,3

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

f3 f4 f5

f3 f4 f5

f4 f5

f2 f3 f4 f5

f2 f3 f4 f4

f2 f3 f4 f5

Snippet length

Edit distance

Fig. 3. Levenshtein NFA recognizing L
(
!(f : Σ5, 3)

)
.

As the original construction defined by
Schultz and Mihov [48] contains cycles and Y-
transitions, we propose a variant which is Y-
free and acyclic. Furthermore, we adopt a sym-
bolic form that supports infinite alphabets and
simplifies the description to follow. Illustrated
in Fig. 3 is an example of a small Levenshtein
automaton recognizing L

(
!(f : Σ5, 3)

)
. Unla-

beled arcs accept any terminal from the alpha-
bet, Σ. Equivalently, this transition system can
be viewed as a kind of proof system within an
unlabeled lattice. The following construction is equivalent to Schultz and Mihov’s original Lev-
enshtein automaton, but is more amenable to our purposes as it does not contain any Y-arcs, and
instead uses skip connections to recognize consecutive deletions of varying lengths.

B ∈ Σ 8 ∈ [0, =] 9 ∈ [1, 3max]
(@8, 9−1

B→ @8, 9) ∈ X
B ∈ Σ 8 ∈ [1, =] 9 ∈ [1, 3max]
(@8−1, 9−1

B→ @8, 9) ∈ X
8 ∈ [1, =] 9 ∈ [0, 3max]
(@8−1, 9

f8→ @8, 9) ∈ X
3 ∈ [1, 3max] 8 ∈ [3 + 1, =] 9 ∈ [3, 3max]

(@8−3−1, 9−3
f8→ @8, 9) ∈ X

Init
@0,0 ∈ �

@8, 9 ∈ & |= − 8 + 9 | ≤ 3max
Done

@8, 9 ∈ �
Each type of arc plays a specific role. handles insertions, handles substitutions and

handles deletions of one or more terminals. Let us consider some illustrative cases.

f . [x) f . x) f . (x) . + (x) f . (x ; [, x y] [, x y]

f . (x) f . (x) f . () (x) f * x ; [x , y] [x , y]

Note that the same patch can have multiple Levenshtein alignments. Done constructs the final
states, which are all states accepting strings f ′ whose Levenshtein distance Δ(f, f ′) ≤ 3max.

To avoid creating a parallel bundle of arcs for each insertion and substitution point, we instead
decorate each arc with a symbolic predicate, accepting or rejecting f8 . To distinguish this symbolic
variant from the original construction, we highlight the modified rules in orange below.

8 ∈ [0, =] 9 ∈ [1, 3max]

(@8, 9−1
[≠f8+1]→ @8, 9) ∈ X

8 ∈ [1, =] 9 ∈ [1, 3max]

(@8−1, 9−1
[≠f8]→ @8, 9) ∈ X

8 ∈ [1, =] 9 ∈ [0, 3max]

(@8−1, 9
[=f8]→ @8, 9) ∈ X

3 ∈ [1, 3max] 8 ∈ [3 + 1, =] 9 ∈ [3, 3max]

(@8−3−1, 9−3
[=f8]→ @8, 9) ∈ X

Using a symbolic predicate in the construction of the NFA avoids the unnecessary creation of
2(|Σ| − 1) · |f | · 3max arcs and reduces the representation size of the resulting automaton, but does
not affect the underlying semantics. Since negation is only permitted over terminals and never
propagates further, complementation can be stricken from the usual GRE axioms (Theorem 2.1).

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Syntax Repair as Language Intersection 9

@0,0 @1,0 @2,0 @3,0

@0,1 @1,1 @2,1 @3,1

[= (] [=)] [=)]

[= (] [=)] [=)]

[≠ (] [≠)] [≠)][≠ (] [≠)] [≠)] [= .]

[=)] [=)]

Fig. 4. Simple Levenshtein automaton.

@0,1 @1,1 @2,1 @3,1

@0,0 @1,0 @2,0 @3,0

Fig. 5. Pairing function overL
(
!(f : Σ3, 1)

)
.

Fig. 6. Adjacency and reachability matrix.

"0 @00 @01 @10 @11 @20 @21 @30 @31

@00
(

�
�

�
!

�
'

�
(

�
�

�
!

�
'

�
(

�
�

�
!

�
'

�
(

�
�

�
!

�
'

�
(

�
�

�
!

�
'

�
(

�
�

�
!

�
'

�
(

�
�

�
!

�
'

�

@01 ���� ���� ���� ���� ���� ����

@10 ���� ���� ���� ���� ����

@11 ���� ���� ���� ����

@20 ���� ���� ����

@21 ���� ����

@30 ����

@31

Fig. 7. Initial parse chart configuration.

"∞ @00 @01 @10 @11 @20 @21 @30 @31

@00
(

�
�

�
!

�
'

�
(

�
�

�
!

�
'

�
(

�
�

�
!

�
'

�
(

�
�

�
!

�
'

�
(

�
�

�
!

�
'

�
(

�
�

�
!

�
'

�
(

�
�

�
!

�
'

�

@01 ���� ���� ���� ���� ���� ����

@10 ���� ���� ���� ���� ����

@11 ���� ���� ���� ����

@20 ���� ���� ����

@21 ���� ����

@30 ����

@31

Fig. 8. Final parse chart configuration.

∨

∨ ∨

· · ·

· ·

{Σ₀} {Σ₁} {Σ₀} {Σ₁}

{Σ₀} {Σ₁} {Σ₀} ·

· {Σ₁}

{Σ₀} {Σ₁}

· ·

· ·

{Σ₀} {Σ₁} {Σ₀} {Σ₁}

{Σ₀} ·

· {Σ₁}

{Σ₀} {Σ₁}

Fig. 9. Regular expression denoting L(�∩).

As a concrete example, suppose we have the string,
f
:
= ()) and wish to balance the parentheses. We will

initially have the Levenshtein automaton, �, depicted
in Fig. 4. To check for non-emptiness, we will perform
the following procedure. Suppose we have a CNF CFG,
� ′ =

{
(→ !', (→ !�, (→ ((, � → (', ! →(, ' →)

}
and let us assume an ordering of (, �, !, ' on + .

First, we need to order the automata states by increas-
ing longest-path distance from @0. One approach would
be to topologically sort the adjacency matrix. While some
form of sorting is unavoidable for arbitrary ANFAs, if we
know ahead of time that our structure is a Levenshtein
automaton, we can simply enumerate its state space by
increasing Manhattan distance from the origin. So, a valid
ordering on & would be @00, @01, @10, @11, @20, @21, @30, @31.
Now, we want to compute whether [L(� ′) ∩L(�) ≠ ∅].

Under such an ordering, the adjacency matrix takes an
upper triangular form and becomes the template for the
initial parse chart, "0 (Fig. 7). Each entry of this chart
corresponds to a vector of expressions � |+ | with at least
one expression denoting a nonempty language. Likewise,
the reachability matrix signifies a subset of state pairs
which can participate in the language intersection. The
adjacency and reachability matrices will always cover
the expression vectors of the initial and final parse charts,
respectively. In other words, we may safely ignore absent
〈@, @′〉 pairs in the reachability matrix, as these state pairs
definitely cannot participate in the intersection.

From the reachability matrix we can construct the
parse chart via matrix exponentiation. We note that
n-step reachability constrains n-step parseability, i.e.,∑=

8=0�
8 [@, @′] = � ` "= [@, @′, E] = �, thus we can avoid

substantial work via memoization. In this example, since
"∞ [@00, @31, (] = �, this implies that L(�) ∩L(� ′) ≠ ∅,
hence LED(f,�) = 1. Using the samematrix, wewill then
perform a second pass to construct regular expressions
representing finite languages for each nonempty con-
stituent. Once again, we can skip 〈@, @′, E〉 entries when
"∞ [@, @′, E] = � to hasten convergence.

Just as before, we will define ⊕, ⊗ over GRE vectors,
where - ⊗ / = [-G · /I | (F → GI) ∈ %]F∈+ and
- ⊕/ = [-F ∨/F]F∈+ . Finally, we will repeat the matrix
exponential, using "∞ in the binary domain as a guide.
This allows us to construct the regular expression tree
for (∩ = @00(@20 ∨ @00(@31 shown in Fig. 9. Once this
regex is constructed, decoding becomes simply a matter
of invoking choose((∩). In this case, there are only a few
choices, but in general, there can be a vast multitude.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

5 MEASURING THE LANGUAGE INTERSECTION
We will now attempt to put a probability distribution over the language intersection. We shall start
with a few cursory but illuminative approaches, then proceed towards a more refined solution.

5.1 Mode collapse
Ordinarily, one might think to train a top-down PCFG sampler using a treebank of well-formed
code snippets, however this method is highly degenerate in the finite case, exhibiting poor sample
diversity. Consider an illustrative pathological case for top-down ancestral (TDA) sampling:

� =

{
(→ � �

(
105 − 1
105

)
, (→ � �

(
1
105

)
, �→ 0 (1), � → 1 (1), � → 0

(
1
26

)
| . . . | I

(
1
26

)}
Such a sampler will almost always yield 01, but most of L(�) is concealed in the hidden branch,
(→ �� . Though a contrived example, it illustrates why TDA sampling is unviable: our sampler
should match the true distribution over the finite CFL, not the PCFG’s local approximation thereof.

5.2 Exact enumeration
To correct for mode collapse, a brute force solution would be to simply generate every tree.While the
whole set can be materialized in some cases when the intersection language is small, this strategy
is clearly suboptimal due to its worst-case complexity. Nevertheless, it is useful for checking
completeness. To enumerate trees, we first need the total number of trees, which is denoted |4 |.

Definition 5.1 (Cardinality). |4 | : � → N =

1 if 4 ∈ Σ
G × I if 4 = G · I
G + I if 4 = G ∨ I

Theorem 5.2 (Enumeration). To enumerate, we can invoke
⋃ |' |

8=0{enum(', 8)}:

enum(4, =) : � × N→ Σ∗ =

4 if 4 ∈ Σ
enum

(
G, b =|I | c

)
· enum

(
I, = mod |I |

)
if 4 = G · I

enum
(
(G, I)min(1,b =

|G | c) , = − |G |min(1, b =
|G | c)

)
if 4 = G ∨ I

This can be converted to a uniform sampler by drawing integers without replacement using a
pseudorandom number generator, however, if |4 | is very large, enum can fail to capture modes.

5.3 The problem with ambiguity
The main problem with the previous approach is that it counts distinct trees, which overcounts the
total number of words, |L(�∩) |. Since the Levenshtein automaton can be ambiguous, this causes
certain repairs to be overrepresented, resulting in a pernicious bias. Consider, for example,

Lemma 5.3. If the FSA, U , is ambiguous, then the intersection grammar, �∩, can be ambiguous.

Proof. Let ℓ be the language defined by � = {(→ !', ! → (, ' →)}, where U = !(f
:
, 2), the

broken string f
:
is)(, and L(�∩) = ℓ ∩ L(U). Then, L(�∩) contains the following two identical

repairs:)() with the parse (→ @00!@21 @21'@22, and () with the parse (→ @00!@11 @11'@22. �

We would expect the underlying sample space to be a proper set, not a multiset.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Syntax Repair as Language Intersection 11

5.4 Disambiguation
To count the number of distinct repairs, we will need to convert �∩ to an automaton. Since L(�∩)
is finite, it must be regular a fortiori. Recalling the definition for an NFA, 〈&, Σ, X, @U : &, � ⊆ &〉,
and star-free regex, 4 → Σ | 4 ∨ 4 | 4 ∧ 4 , we will proceed by structural induction on the regex:

(4) =

〈
{@U , @l } , {@U

4→ @l } , @U , {@l }
〉

if 4 ∈ Σ〈
&G ∪&I , {@ B→ @UI | (@

B→ @∈�Gl) ∈ XG } ∪ XG ∪ XI , @UG , �I
〉

if 4 = G · I〈
&G ∪ {@U4 } ∪
&I ∪ {@l4 }

,
{@U4

B→ @ | (@UG,UI
B→ @) ∈ XG,I} ∪ XG ∪

{@ B→ @l4 | (@
B→ @

∈�G,I
l) ∈ XG,I} ∪ XI

, @U4 , {@l4 }
〉

if 4 = G ∨ I

- - - - - - - - - - - - or - - - - - - - - - - - -〈
&G ∪&I ∪ {@U4 } , {@U4

B→ @ | (@UG,UI
B→ @) ∈ XG,I} ∪ XG ∪ XI , @U4 , �G ∪ �I

〉
if 4 = G ∨ I

Though less conventional than Thompson’s construction, # (4) avoids the creation of unnecessary
Y arcs. And while slightly more verbose, we find the topology induced by the first version of the ∨
case to be more favorable for minimization. Continuing with our running example from § 4.3, we
will use Brzozowski’s algorithm [8] to construct the unique minimal DFA, �∗∩ ≡L �∩:

(

(

(

)
(

)

)
(

(

(

(

) ()

)

))(

q₂

q₄

)

q₅
)

q₁

(

q₃

) (q₀
(

Fig. 10. FSA for L
(
!(()), 1)

)
∩ L(� ′) (a) with or (b) without ∨-merging, and then (c) post-minimization.

Since L(�∩) is necessarily finite, we can infer that the corresponding DFA is acyclic and thus
representable as an upper triangular adjacency matrix under a topological ordering of X . For any
such DFA, we can ascertain the size of its language by counting walks from @U to @l ∈ � . Letting �
be the adjacency matrix for �∗∩, i.e., �[@, @′] =

[
1 if ∃B : Σ s.t. (@ B→ @′) ∈ X else 0

]
, the number of

words it recognizes is given via the transfer matrix method [23], that is,

� (�,@U , �) : N |& |× |& | ×& × 2& → N =
∑
@l ∈�
(� −�)−1 [@U , @l] =

∑
@l ∈�

|& |−1∑
8=0

�8 [@U , @l] (12)

Plugging in powers of the adjacency matrix for the DFA shown in Fig. 10.(c), we arrive at the total:

(� −�)−1 = � +� + �2 + �3 + �4 (13)

=
©«
1 1

1 1 1
1 1

1 1
1 1

1

ª®®¬ +
©«

1 1
2

1
1

ª®®¬ +
©«

2
2ª®®¬ +

©«
2ª®®¬ (14)

=
©«
1 1 1 1 2 2

1 1 1 2 2
1 1 1

1 1 1
1 1

1

ª®®¬ therefore,
��L(�∗∩)�� = �

(
�,@0, {@3, @5}

)
= 1 + 2 = 3. (15)

Note the model counting problem for arbitrary GREs is strictly harder than deciding intersection
nonemptiness as it requires determinization, however, weak bounds may be obtained by applying
� to the FSA generated by # (4) or by direct analysis of 4 . While the inequality ��∗∩ ≤ �# (4) ≤ |4 |
will hold, the bounds provided by the latter approximations may be vacuous, whereas ��∗∩ is exact.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Anon.

6 IMPLEMENTATION
The implementation essentially consists of four stages, each dependent on its predecessor.

(1) lev_build : Σ |& |−1 × N3 → NFA – constructs a Levenshtein NFA from the broken string.
(2) cfl_fixpt : NFA × CFG→ B |& |× |& |× |+ | – computes the matrix exponential.
(3) reg_build : B |& |× |& |× |+ | × CFG→ GRE – constructs the regular expression for �∩.
(4) reg_dcode : GRE×N |Σ |2≈3×N→ (Σ+):≈10 – returns a small set of the most probable repairs.

We will now explore the imperative pseudocode for each stage, starting with the Levenshtein
automata constructor, which is a straightforward translation of the inference rules in § 4.3.

Algorithm 1 lev_build pseudocode
1: procedure lev_build(f : Σ=, 3max : N) ⊲ Takes a string and maximum edit distance.
2: &, X ← ∅
3: for 〈ℎ, 9, 8, :〉 in [0, =]2 × [0, 3max]2 do

4: X ← X ∪

@ℎ,8
[≠f 9+1]→ @ 9,: if ℎ = 9 ∧ 8 = : − 1

@ℎ,8
[≠f 9]→ @ 9,: if ℎ = 9 − 1 ∧ 8 = : − 1

@ℎ,8
[=f 9]→ @ 9,: if ℎ = 9 − 1 ∧ 8 = :

@ℎ,8
[=f 9]→ @ 9,: if 1 ≤ 9 − ℎ − 1 ≤ 3max ∧ 1 ≤ : − 8 ≤ 3max

5: & ← & ∪ {@ℎ,8 , @ 9,: }
6: � ← {@0,0}, � ← {@8, 9 | = − 8 + 9 ≤ 3max}
7: return 〈&, Σ, X ⊆ & × (Σ→ B) ×&,@U , � 〉 ⊲ Returns a [symbolic] Levenshtein automaton.

Next, the chart parser expects an acyclic NFA, a CNF grammar and returns a Boolean 3-tensor.

Algorithm 2 cfl_fixpt pseudocode
Require: CFGmust be in CNF and the NFAmust be Y-free and acyclic (i.e., denote a finite language).
1: procedure cfl_fixpt

(
〈Σ,+ , %, (〉 : CFG, 〈&, Σ, X, @U , � 〉 : NFA

)
2: ' : B |& |× |& | ←

[
� if ∃f ∈ Σ+ | @ f

 @′ else �
]
@,@′ :& ⊲ Solve for reachability matrix.

3: " : B |& |× |& |× |+ | ←
[
� if ∃B : Σ | (E → B) ∈ % ∧ (@

i
→ @′) ∈ X ∧ i (B) else �

]
@,@′ :&, E :+

4: for 8 in
[
0, dlog2 (|& | |+ |)e

]
do ⊲ Solves matrix exponential, exp("0).

5: done← �
6: for 〈?, A,F〉 in &2 ×+ do ⊲ Iterates one step of "8+1 = "8 +"2

8 .
7: if" [?, A,F] or not ' [?, A] then continue
8: &?A ←

{
@ : & | ' [?, @] ∧ ' [@, A]

}
⊲ Consider reachable states between p and r.

9: " [?, A,F] ← � if ∃@ : &?A , G, I : + | " [?, @, G] ∧" [@, A, I] ∧ (F → GI) ∈ % else �
10: if" [?, A,F] then done← �
11: if done then break
12: return" ⊲ Returns the completed Boolean parse chart.

Note we may short-circuit for three reasons, if: "8+1 = "8 , when two states @, @′ are unreachable,
or whenever a 〈@, @′, E〉 is already present. Once we obtain "∞, we can immediately tell whether
ℓ∩ ≠ ∅ by checking whether "∞ [@U , @l , (] = � for some @l : � . Otherwise if no such @l exists,
then ℓ∩ must be empty and 3max should be enlarged before proceeding.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Syntax Repair as Language Intersection 13

Now we can perform a second sweep over nonempty entries of the Boolean parse chart, recon-
structing the provenance of each 〈@, @′, E〉 constituent. For compactness it will be convenient to use
a pointer-based representation of the regular expression instead of manipulating strings.

Algorithm 3 reg_build pseudocode

Require: Same as cfl_fixpt (Alg. 2), "B [@U , @l : �, (] = � for some @l , and "B = "B +"2
B.

1: procedure reg_build
(
"B : B |& |× |& |× |+ | , 〈Σ,+ , %, (〉 : CFG, 〈&, Σ, X, @U , � 〉 : NFA

)
2: % : B |& |× |& | ←

[
� if ∃@ : &, E, E ′ : + | "B [?, @, E] ∧"B [@, A, E ′] else �

]
?, A :&

3: " : GRE |& |× |& |× |+ | ←
[
{B : Σ | " [@, @′, E] ∧ (@

i
→ @′) ∈ X∧(E → B) ∈ %∧i (B)}

]
@,@′ :&, E :+

4: for 8 in
[
0, dlog2 (|& | |+ |)e

]
do

5: " ′ ← "

6: for 〈?, A,F〉 in &2 ×+ do
7: if not"B [?, A,F] then continue
8: &?A ←

{
@ : & | % [?, @] ∧ % [@, A]

}
⊲ Consider parseable states between p and r.

9: " ′ [?, A,F] ← " [?, A,F] ∨
∨

@ :&?A

G, I :+

{
" [?, @, G] ·" [@, A, I] | (F → GI) ∈ %

}
10: if" = " ′ then break else" ← " ′

11: return
∨
@l : �

" [@U , @l , (] ⊲ Union regexes for all total parses yielding S.

Finally, once we have the expression for�∩, we can decode it to extract a small set of candidates.
Various strategies are possible here, and we opt for the simplest one. We use two priority queues to
store partial and total trajectories, which are ranked by probability as estimated by a pretrained
c-gram count tensor, � . Partial trajectories are greedily extended until termination, after which the
trajectory it is diverted to the total queue, and the top-k total trajectories are returned.

Algorithm 4 reg_dcode pseudocode
Require: We expect the shortest word to exceed the Markov order in length, 2 < |f |,∀f : L(4).
1: procedure reg_dcode

(
4 : GRE,� : N |Σ |

2≈3
, : : N

)
2: T ← [], E ←

[
〈Y2−1, 4 · Y2−1, 0〉

]
⊲ Initialize total and partial trajectories.

3: let % (B : Σ | f : Σ≥2−1) =
� [f |f |−2+1, |f | · B] + 1∑
B′∈Σ� [f |f |−2+1, |f | · B′]

⊲ Define Markov transition probability.

4: repeat
5: 〈f, 4, ?〉 ← pop E0 off E
6: E ′ ←

[
〈f · 0, m04, ? + ln % (0 | f)〉 | 0 ∈ follow(4)

]
7: T ← T ^++

[
〈f, ?〉 | 〈f, 4, ?〉 ∈ E ′ ∧ Y ∈ L(4)

]
8: E ←

[
〈f, 4, ?〉 ∈ (E^++E ′) sorted by ?

]
9: until interrupted or E is empty.

10: return [f | 〈f, ?〉 ∈ T0..: sorted by ?] ⊲ Skim off top-k repairs by c-gram probability.

Now, we have our shortlist of repairs and after cosmetic postprocessing, can present them to the
user. With this approach, we can quickly generate a representative subset of ℓ∩ within a fixed latency
budget, e.g., 1̃00ms, or otherwise terminate early should we succeed in exhaustively generating it.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Anon.

6.1 GPU translation
The foregoing architecture can be translated to series of high-performance GPU kernels. Our
strategy will be to maximize GPU utilization by distributing the workload for each stage across as
many independent threads as we can simultaneously dispatch. Each thread will be responsible for
writing to a dedicated portion of a shared buffer without locking or external communication.

We will make the simplifying assumption that each GPU kernel is a pure function that takes
as input a coordinate triple A, 2, E : N and one or more flat buffers 11 : N31 , . . . 1= : N3= containing
encoded data, does some arithmetic, and returns a single output buffer, 1out : N3 . On a GPU, all
memory must be sized ahead of time, as dynamic allocation is forbidden during a GPU kernel’s
execution. The main challenge of GPU programming then, becomes careful memory management
and efficiently mapping aggregate datatypes to and from the integers. Conceptually, each 〈A, 2, E〉
triple will be dispatched to a single GPU thread with global read access to the input buffers and
exclusive write access to a contiguous region of the output buffer. Consistent with the PRAM model
used in Theorem 3.1, each thread will correspond to a single processor, with |& |2 |+ | threads in total.
Absent a GPU, this can be rewritten as a triply-nested loop, subject to additional latency.

For the CFG andNFAdatatypes, we elect to use a dense representationB |+ |× |+ |× |+ | andB |& |× |& |× |Σ |
due to the tripartite coordinate structure and thread dispatching API. While these datatypes can be
encoded sparsely as N3 |% | and N3 |X | , for most repair instances and memory configurations represen-
tation size is not a bottleneck. It will be helpful to define characteristic functions nt_enc : Σ→ 2+ ,
nt_dec : + → 2Σ for nonterminal encoding and decoding, and index sets Σ↔ N, + ↔ N, & ↔ N
for getting in and out of the uint domain, with |+ |, |& | . 103 adjustable upward if memory permits.

The parse chart " can be represented as a bit-packed integer matrix uint32 |& |× |& |× |+ | , whose
layout testifies to four properties of each 〈@, @′, E〉 triple: (1) the first bit encodes the dis/equality
predicate i , (2) the next 25 bits designate terminal participation

(
if ∃B : Σ.i (B) ∧ (@

i
→ @′) ∈ X

)
,

(3) the next five bits memoize the minimum 8min such that"8min [@, @′, E]&1 = � for short-circuiting
(see Line #7 of Alg. 3), and (4) the lowest-order bit denotes parsability, i.e., @ @′ ` E . Note the
decoder must acknowledge the possibility that E can simultaneously parse (a) an arc @ → @′ and
(b) a path @ @′, so each branch can be explored. This is depicted below in little-endian format:

[=/≠m
�,

B : Σ⇔B25︷ ︸︸ ︷
�,�, . . . ,�,�,�,

8min: N≤32⇔B5︷ ︸︸ ︷
�,�,�,�,�,

E:+
m
�

]
: uint32

Once cfl_fixpt (Alg. 2) is complete, we can calculate the total amount of memory needed to
allocate �∩ by counting constituents in the parse chart. Being an algebraic datatype, the GRE can
be flattened according to a variety of allocation models. We will use the following memory layout,

[bp_counts︷ ︸︸ ︷
2
bp0
, 7
bp1
, . . . , 1

bp2−2
, 3
bp2−1

,

bp_offsets︷ ︸︸ ︷
0, 4, . . . , = − 8

bp2−2
, = − 6
bp2−1

,

bp_storage︷ ︸︸ ︷
59, 83, 64, 152︸ ︷︷ ︸

bp0

, . . . , 34, 83︸︷︷︸
bp2−2

, 22, 74, 74, 90, 16, 66︸ ︷︷ ︸
bp2−1

]
: uint32=

where each bp8 represents a nonempty 〈@, @′, E〉 constituent with at least one back-pointer pair,
bp_count(?, A,F) =

��{〈@, G, I〉 | " [?, @, G] ∧ " [@, A, I] ∧ (F → GI) ∈ %
}�� counts the number of

unique backpointers held by each nonterminal F parseable from ? A , and bp_storage stores
pointers to memory locations in the same data structure. These pointers should also be tied to
locations in the parse chart " [@, @′, E] to recover the terminal subsets for unit productions.

In total, the GPU should have at least 4 GB of onboard memory to accommodate language
intersections with up to 103 states and nonterminals

(
|& |2 × |+ | . 106 × 103 × 32 bits ≈ 4 GB

)
,

however occupancy can be roughly halved by exploiting the upper-triangular structure of " .

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Syntax Repair as Language Intersection 15

6.2 Training the reranker
After decoding, we have a list of repair candidates that are all valid, nearby and at least somewhat
plausible, however it is possible this list may be quite long. No reasonable user would be expected
to skim through more than a few dozen candidates to select their intended repair, especially since
they could have presumably written it themselves in a few seconds. So, we will proceed to rerank
the list. If we can guarantee the candidate repairs are sufficiently exhaustive, they should include
with high probability the true repair, which then need only be surfaced into the user’s field of view.

The ensuing method falls under the umbrella of the learning-to-rank (LTR) problem in machine
learning – using their terminology, the broken code snippet would be called a query and the list of
repairs, documents. To discuss the reranker, we must now overload some concepts, so the reader is
trusted to contextually interpret L as denoting a loss instead of a language, and the derivative 4

as the directional rate of change of a differentiable manifold over the parameter space of a neural
network. Matrix multiplication remains more or less the same, except now over the reals.

The reranker employs a transformer-encoder architecture to map both the query (broken code
snippet, denoted f

:
: ℓ̄) and the document (candidate repair, denoted f : ℓ∩) to a ?-dimensional real

vector space R? . We elide the definition of a transformer-encoder (see Strobl et al.’s survey [50]),
except to say that it is a function, E\ , which takes a string and a positional encoding, and returns
an embedding, E\ : (Σ × N)= → R? where \ are learnable parameters. To these, we will introduce
a Levenshtein alignment (LA : Σ= × Σ< → N[<,=]) as a third argument that, when applied to a
query-document pair, will produce a vector tracking edit locations and types. Finally, a multilayer
perceptron (MLP\ : R? × R? → R+) processes the embedding to produce a relevance score:

5\ (f:, f) : Σ
= × Σ< → R+ = MLP\

(
E\

(
f
:
, [8]8∈[0,=)

)
, E′

\

(
f, [8]8∈[0,<) , LA(f:, f)

))
(16)

Our training objective will be to minimize the tempered softmax or listwise cross-entropy loss,

L(\) = −
∑
@∈Q

log

(
exp

(
5\ (@,3∗)g−1

)∑
3∈D@

exp
(
5\ (@,3)g−1

)) (17)

where Q is the set of training queries, D@ is the set of candidate repairs for query @, and 3∗ ∈ D@

is true repair. The temperature parameter, g controls the sharpness of the softmax distribution,
encouraging parameter settings that result in the true repair being assigned higher priority – the
closer to zero, the greater the loss will be for underestimating the relevance of the true repair.

@: NAME = NAME) NAME

PE: 0 1 2 3 4
31: NAME = NAME (NAME)

PE: 0 1 2 3 4 5
LA: 0 0 0 2 0 1
32: NAME (NAME) NAME

PE: 0 1 2 3 4
LA: 0 2 0 0 3
33: NAME = NAME . NAME ()

PE: 0 1 2 3 4 5 6
LA: 0 0 0 2 0 1 1

Fig. 11. Transformer data encoding.

More concretely, we depict a single instance of the
training data in Fig. 11. The reranking model sees a
(1) query, (2) document, (3) positional encoding and
(4) Levenshtein alignment, and returns a numerical score.
Once the relevance scores are obtained, we calculate the
cross-entropy loss across the top-: scoring documents
and backpropagate. In practice, this update is averaged
across a batch 〈@8 , [3 9]0...:〉8=0... |� |≈16 of repair instances to
reduce noise. The batch update rule is a standard variant
of stochastic gradient descent

(
\ ′ ← \ − U∇\L(\)

)
with

momentum (AdamW), where the learning rate is in the
range U ≈ 10−4. A more exhaustive description of the
architectural details and hyperparameter settings used
for training the reranker can be found in Appendix C.

4There is a connection to Brzozowski’s derivative, but to refrain from digression here we refer the reader to [21] for details.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

7 EVALUATION
We call our method Tidyparse and consider the following research questions:

• RQ 1: What statistical properties do human repairs exhibit? (e.g., length, edit distance)
• RQ 2: How performant is Tidyparse at fixing syntax errors? (i.e., vs. Seq2Parse and BIFI)
• RQ 3: Which design choices are most significant? (e.g., decoding, reranking, parallelism)

We address RQ 1 in § 7.2 by analyzing the distribution of natural code snippet lengths and edit
distances, RQ 2 in § 7.3 by comparing Tidyparse against two existing syntax repair baselines, and
RQ 3 in § 7.4 by ablating various design choices and evaluating the impact on precision and latency.

7.1 Experimental setup
In the following set of experiments, we use syntax errors and fixes from the Python language.
Python code snippets are abstracted as a sequence of lexical tokens using the official Python 3.8.11
parser, erasing alphanumeric identifiers and literals but retaining all other keywords. Accuracy is
evaluated across a test set of pairwise errors and repairs by checking for lexical equivalence with
the ground-truth repair, following the same methodology as Sakkas et al. (2022) [46].

We use the Precision@k statistic, whichmeasures the frequency of the true repair appearing in the
top-k results, across a dataset of repair instances. Specifically, given a repair model, ' : Σ∗ → (Σ∗)C
and a test set, Dtest, containing pairwise aligned errors (f

:
) and fixes (f ′), we define Precision@k as:

Precision@k(') = |Dtest |−1
∑
Dtest

1 [f ′ ∈ '(f
:
)0...:] (18)

Our full dataset [56] consists of 2 × 104 naturally-occurring pairs of Python errors and human
fixes from StackOverflow, which we use to evaluate the precision of each model at blind recovery
of the ground truth repair. From the StackOverflow dataset, we filter for syntax errors shorter than
80 tokens and fewer than four lexical edits apart from the corresponding repair, then divide the
remaining repairs into two disjoint sets: a training set (Dtrain) of 4,586 repair instances and a test
set (Dtest) of 2,238 repair instances, balanced across each length interval and edit distance, i.e.,
Dtest = {〈f:, f ′〉 | b|f: |/10c ∈ [0, 8],Δ(f:, f ′) ∈ [1, 3]}, each test bin containing at least 50 instances.

To train the reranker, we augment each instance in the training and test set with a list of repair
confounders. Each instance consists of a tuple, 〈f

:
: ℓ̄, f ′ : ℓ∩,2 : ℓ≤10

3

∩ 〉, with a single syntax error
(f
:
), the ground truth repair, (f ′), and up to 103 confounders (2) sampled without replacement

from ℓ∩ using our pretrained 4-gram model. We then train the reranker on Dtrain for 13,000 steps
which takes ∼ 4 hours, and evaluate on Dtest. Hyperparameters are provided in Appendix C.

For our final repair procedure, we use the CNF Python grammar, �Python and let 3max be the
smallest value such that ℓ∩ = L(�) ∩ L

(
!(f

:
, 3max − 1)

)
is nonempty. We decode ℓ∩ with the

same pretrained 4-gram model used in reranker training, and pass the top 103 results by 4-gram
probability to the transformer encoder, then finally rerank the top 103 by softmax probability and
measure the Precision@k across repairs of differing length and edit distance in the test set.

We compare our method with two external baselines, Seq2Parse and Break-It-Fix-It (BIFI) [58],
on the same test set. The Seq2Parse and BIFI experiments were conducted on a single Nvidia
V100 GPU with 32 GB of RAM. For Seq2Parse, we use the default pretrained model provided in
commit 7ae0681. 5 For BIFI, we use the Round 2 breaker and fixer from commit ee2a68c,6 the
highest-performing model reported by the authors, with a variable-width beam search to control
the number of predictions, and let the BIFI fixer model predict the top-{1, 2 × 104} repairs. Finally,
for Tidyparse, we use a standard Apple MacBook M4 Max with 128 GB of memory.
5https://github.com/gsakkas/seq2parse/tree/7ae0681f1139cb873868727f035c1b7a369c3eb9
6https://github.com/michiyasunaga/BIFI/tree/ee2a68cff8dbe88d2a2b2b5feabc7311d5f8338b

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Syntax Repair as Language Intersection 17

7.2 Dataset statistics
In the following experiments, we use a dataset of Python snippets consisting of 20,500 pairwise-
aligned human errors and fixes from StackOverflow [56]. We preprocess the dataset to lexicalize all
code snippets, then filter by length and distance shorter than 80 lexical tokens and under four edits,
i.e., with Levenshtein distance under four lexical edits

(
|Σ| = 88, |f

:
| < 80,Δ(f

:
, f ′) < 4

)
. We depict

the length, edit distance, normalized edit locations and stability profile in Fig. 12.

<20 <40 <60 <80 <100
0

20

40

60

Snippet length, |f
:
|

Fr
eq

ue
nc

y

Cumulative length distribution

≤2 ≤4 ≤6 ≤8 ≤10
0

20

40

60

Edit distance, Δ(f
:
, f ′)

Fr
eq

ue
nc

y

Human repair distance

20% 40% 60% 80% 100%
0

10

20

30

Beginning←→ End

Fr
eq

ue
nc

y

Normalized edit locations

[10,20) [30,40) [50,60) [70,80)
0

0.2
0.4
0.6
0.8
1.0

Snippet length, |f
:
|

St
ab

le
re
gi
on

Stability profile

Δ(f
:
, f ′) = 1, 2, 3

Fig. 12. Repair statistics across the StackOverflow dataset, of which Tidyparse can handle about half in under
∼3s and ∼4 GB. Larger repairs and edit distances are possible, albeit requiring additional time and memory.

We observe that slightly over 6,700 code snippet pairs in the StackOverflow dataset contain
fewer than 80 tokens and four lexical edits, which are computational feasible to process in a few
hundred milliseconds. We also note a slight primacy or recency bias in the edit locations, evidenced
by a large fraction of human repairs which modify the boundaries of the broken code snippet.

For the stability profile, we enumerate repairs for each syntax error and estimate the average
fraction of all edit locations that were never altered by any repair in the !

(
f
:
,Δ(f

:
, f ′)

)
-ball. For

example, on average roughly half of the string is stable for 3-edit syntax repairs in the [10 − 20)
token range, whereas 1-edit repairs of the same length could modify only ∼ 10% of all locations.
For a fixed edit distance, we observe an overall decrease in the number of degrees of caret freedom
with increasing length, which intuitively makes sense, as the repairs are more heavily constrained
by the surrounding context and their locations grow more concentrated relative to the entire string.

0 20 40 60 80 100
20

26

212

218

224

Snippet length, |f
:
|

Vo
lu
m
e,
|ℓ ∩
|

Language intersection volume

Δ(f
:
, f ′) = LED(f

:
) + { 0, 1, 2}

Fig. 13. Language volume versus snippet length
and edit distance for Python repairs.

For an intuition about the size of the language
intersections involved in syntax repair, volumetric
analysis will be helpful, particularly in understand-
ing the influence of snippet length and edit distance
on language intersection volume. To measure the
intersection volume we will form the !

(
f
:
,Δ(f

:
, f ′)

)
automaton, intersect it with the Python grammar,
then automatize the resulting regular expression and
finally compute the DFA transfer matrix using the
method described in § 5.4 to obtain the exact volume.
For a given (error, fix) pair, this tells us how many
repairs of equal or lesser distance exist in the Python
language. Plotting intersection volume across the
full dataset (Fig. 13), we observe a strong positive
correlation with the Levenshtein margin and a mild
correlation with snippet length. Fully materializing
ℓ∩ is typically only feasible if we extend the Levenshtein radius up to one edit beyond the language
edit distance (LED)

(
i.e., 3max ≤ LED(f

:
)7+1

)
after which it grows too large to exhaustively generate

and must be sampled. Across all snippets where Δ(f
:
, f ′) < 4, approximately 54% matched LED(f

:
),

35% had an edit distance of LED(f
:
) + 1 and 11% had a distance of LED(f

:
) + 2.

7Where LED(f
:
) is shorthand for LED(f

:
, ℓ) = min

{
3max : N | L

(
! (f

:
, 3max)

)
∩ ℓ ≠ ∅

}
with ℓ being the Python language.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

7.3 StackOverflow evaluation
For our first experiment, we measure the top-1 precision of our repair procedure at various lengths
and Levenshtein distances, comparing Tidyparse against Seq2Parse, and BIFI on the same test set.
Each bin in the test set contains at least 50 distinct repairs sampled uniformly at random from the
StackOverflow dataset, none of which were present in the training set of any repair model.

(0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Snippet length, |f |

Pr
ec

is
io
n@

1

Tidyparse Repair Precision@1

Δ(f
:
, f ′) = 1, 2, 3

(0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Snippet length, |f |

Pr
ec

is
io
n@

1

Seq2Parse Repair Precision@1

(0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Snippet length, |f |

Pr
ec

is
io
n@

1

BIFI Repair Precision@1

Fig. 14. Probability of the first recommendation matching the true repair for Tidyparse, Seq2Parse and BIFI
repair precision at various lengths and Levenshtein distances.

Tidyparse attains state-of-the-art top-1 repair precision versus both models by a wide margin. Un-
expectedly, precision does not monotonically decrease with edit distance, as Tidyparse’s double-edit
Precision@1 slightly outperforms single-edit Precision@1 across the test set. Although Seq2Parse
outperforms BIFI by a lower margin, results are also mixed for the 2-edit repair case. Similar to
Fig. 13, the nonlinear correlation between edit distance and repair precision holds across all three
models, as does a slightly negative correlation between repair length and precision.

(0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Snippet length, |f |

Pr
ec

is
io
n@

10

Tidyparse Repair Precision@10

Δ(f
:
, f ′) = 1, 2, 3

(0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Snippet length, |f |

Pr
ec

is
io
n@

20
k

BIFI Repair Precision@20,000

Fig. 15. Probability of the true repair being in the first
ten Tidyparse repairs, and the first 2× 104 BIFI repairs.

For the next experiment, we evaluate the BIFI
model, giving it a generous compute and la-
tency advantage with an unlimited time budget
to sample 2 × 104 repairs, and compare the Pre-
cision@10 of our approach with a 10s timeout.
As Tidyparse uses a 4-grammodel for decoding,
it can sample a much larger candidate set in the
time allotted, but must use a transformer-based
reranker after decoding to sort the top-103 re-
pairs. Since the Seq2Parse reference implemen-
tation does not support sampling more than
one repair, we do not compare its Precision@k
for higher k values. The raw data from these experiments can be found in Appendix E.

Dtest
2,238

Top-1
675

[2-10]
567 [11-99]

104
Top-100+

285

Not Ranked (f ′ ∉ ℓ∩)
607

Fig. 16. Outcomes in the repair pipeline.

We present a Sankey diagram of the Tidyparse repair
pipeline in Fig. 16. Across 2,238 test set repairs filtered
by length and distance (b|f

:
|/10c ∈ [0, 8],Δ(f

:
, f ′) < 4),

we evaluated Tidyparse with a timeout of 10s and tracked
individual repair outcomes. In 607 cases, the true repair
was not contained in the language intersection and thus
never sampled, in 1,631 cases the true repair was sampled,
of which 675 cases the first prediction matched the true re-
pair, in 1,242 cases, the true repair was in the top-10 results,
and in the remaining 389 cases the true repair was drawn,
but ranked lower than 10th in the final results.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Syntax Repair as Language Intersection 19

7.4 Internal evaluation
The primary question of interest here is, to what extent does the neural reranker improve precision
relative to a naïve decoding strategy? For comparison, we use an 4-gram based repair sans reranking.
That is, we decode the language intersection with a 4-grammodel, sort the repairs by their respective
4-gram probabilities, and without further processing, evaluate Precision@10{0,1,2,3} .

(0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Snippet length, |f |

Pr
ec

is
io
n@

1

4-gram Repair Precision@1

(0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Snippet length, |f |

Pr
ec

is
io
n@

10

4-gram Repair Precision@10

(0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Snippet length, |f |
Pr

ec
is
io
n@

10
0

4-gram Repair Precision@100

(0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Snippet length, |f |

Pr
ec

is
io
n@

10
00

4-gram Repair Precision@1000

Fig. 17. 4-gram repairs. 4-gram Precision@1000 is an upper bound on Tidyparse Precision@k, since the latter
only reranks the top-103 most probable 4-gram sampled repairs from the language intersection.

1 ≤10 ≤102 ≤103 ≤104 ≤105 ≤106
0

0.2

0.4

0.6

0.8

1

Rank of true document (log scale)

Cu
m
ul
at
iv
e
de

ns
ity

Reranking improvement

Transformer
4-gram % (f)
1k Threshold

Fig. 18. Observed improvement in repair rank
with and without the transformer reranker.

We can quantify the ranking improvement by
comparing CDFs of the true repair’s rank across the
test set of human repairs, before and after rerank-
ing the top-103 sampled repairs (Fig. 18). Since we
decode but do not consider less probable repairs,
reranking does not affect repairs originally ranked
lower. Repairs initially ranked in the top-103 results
by 4-gram probability tend to place between 1st and
10th in about 75% of instances after reranking. It is
possible the true repair can be ranked higher before
reranking than after, which occurs in ∼ 4% of cases.

Finally, we investigate the impact of increased
parallelism on repair throughput. To simulate a realistic editing scenario, we measure the
end-to-end wallclock runtime required to construct the Levenshtein automaton, form the
intersection regex ((∩), decode and rank the entire intersection language (ℓ∩). Then, we
swap in our GPU implementation of the algorithm described in § 6 as a replacement
for the CPU version and compare the individual repair timings across the same test set.

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

8

9

10

Snippet length, |f
:
|

Re
pa

ir
la
te
nc

y
(s
)

End-to-end repair latency

CPU
GPU

Fig. 19. End-to-end repair timings.

As shown in Fig. 19, latency depends on various factors but
supports the complexity analysis (§ 3), exhibiting a clearly
superlinear but subexponential runtime profile. While real-
world performance can vary based on LED, intersection
volume and other load factors, the GPU runtime generally
has lower variance and confers a 2-3x speedup across most
common repair scenarios. Our GPU implementation is able
to exhaustively decode the intersection for almost all in-
stances before 10s, however the equivalent CPU version
may struggle to meet the same latency target, especially
on longer or multi-edit repairs. While the 10s timeout can
be arbitrarily extended, we anticipate a much longer delay
would begin to tax the patience of most users, and therefore
consider it a reasonable upper bound for repair latency.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

8 DISCUSSION
The main lesson we draw from § 7 is that it is feasible to significantly improve the precision of
real-time syntax repair by incorporating syntactic constraints such as edit distance, then sampling
and evaluating a large set of candidate repairs using a fast primary decoder and a more intensive
secondary reranker. Though sample-efficient, transformer decoding comes at considerable cost to
throughput, resulting in fewer repairs being discovered in a fixed amount of time.

Our approach uses a grammar and a high-throughput c-gram decoder to fetch the initial candidate
repairs, then employs the transformer-encoder to rerank only the top-scoring repairs from the
retrieved set. This allows us to repair errors in real-world programming languages and provides
far more flexibility and controllability during the repair process, resulting in significantly higher
precision on downstream repairs and ultimately, a smoother user experience.

Our primary insight leading to state-of-the-art precision is that repairs are typically concentrated
near the center of a small Levenshtein ball, and by enumerating or sampling it carefully, then
reranking repairs by naturalness, one can achieve significantly higher precision than single-shot
neural repair. This is especially true for small-radii Levenshtein balls, where the intersection
language is small enough to be completely enumerated and ranked. For larger radii, we can still
achieve state-of-the-art precision by sampling a representative subset within a fixed timeout.

There is a clear tradeoff between latency and precision for any repair model. While existing neural
syntax repair models scale poorly with additional time, Tidyparse is highly effective at exchanging
more time for higher precision. We find that the Precision@10 of our method is competitive with
BIFI’s Precision@2 × 104, while requiring only a fraction of the inference time. Unlike neural
syntax repair models, Tidyparse can sample directly from the language specification, removing
the possibility of hallucination. The emphasis on completeness is especially useful for discovering
small or contextually improbable repairs, which are easily overlooked by neural models.

Although latency and precision are ultimately the deciding usability factors, repair throughput
is a crucial intermediate factor to consider when evaluating the performance of a repair system.
Even with a perfectly accurate reranker, if the correct repair is never retrieved, it will be for naught.
By maximizing the total number of unique valid repairs, we increase the probability of retrieving
natural repairs to give the reranker the best chance of surfacing them to the user.

One might be tempted to model syntax repair as a rejection sampling problem, but as Fig. 13
portrays, this strategy would be mistaken. Even if checking a single repair for validity takes just
1 ms, complete enumeration could take 24+ hours, and we have mere seconds at most. While
rejection sampling has lower latency to find admissible repairs, it wastes a tremendous amount
of computation and scales poorly with edit distance. It is far better to spend more computation
upfront by performing the intersection in a way that avoids rejection and returns natural repairs.

Likewise, methods that rely on decoding large language models appear to face a similar dilemma.
As shown in Fig. 15, even if we sample thousands of repairs from BIFI, an LLM specifically trained
on syntax repair, it is possible to miss natural valid repairs of a given distance that would be easily
found by an extensive c-gram search of ℓ∩, plus reranking. This suggests completeness may be
equally, if not more important, than sample efficiency for the purposes of evaluating candidate
repairs. Indeed, if we compare the 4-gram Precision@100 in Fig. 17 with BIFI’s precision@2 × 104,
4-gram Precision@100 is highly competitive even without any post-decoder reranking.

Taken together, these results provide strong evidence to support the central claim made in the
introduction (§ 1): existing syntax repair methods simply generate far too few repairs to be effective.
By extensively generating and evaluating a large quantity of repairs within a fixed edit distance,
we show it is possible to predict the author’s intent far more reliably, with greater precision and
lower latency than competing methods which rely solely on transformer-based neural networks.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Syntax Repair as Language Intersection 21

8.1 Limitations and future work
We identify three broad categories of limitations in Tidyparse and suggest directions for future
work: naturalness, complexity, and toolchain integration.

8.1.1 Naturalness. Firstly, Tidyparse does not currently support intersections between weighted
CFGs and weighted finite automata, a la Pasti et al. [42].This feature would allow us to put transition
probabilities on the Levenshtein automaton corresponding to edit probability, then construct a
weighted intersection grammar. With this, one could preemptively discard unlikely productions
from �∩ to reduce the complexity of intersection in exchange for relaxed completeness. We also
hope to explore alternate sampling strategies such as sequential Monte-Carlo [35] and denoising
diffusion models [6] with structured sampling priors for Levenshtein edits.

The reranker is currently evaluated over lexical tokens, but we expect that a more precise ranking
function could be constructed by incorporating names and numbers from the original source code
and then scoring plaintext. Furthermore, the decoder only considers each candidate repair %\ (f ′)
in isolation, returning the most probable candidates independent of the original error. This could
be improved by conditioning the decoding on the broken sequence (f

:
), parser error message (<),

original source (B), and possibly other contextual priors to assist sample efficiency.

8.1.2 Complexity. Latency can vary depending on several factors including string length, grammar
size, and critically the Levenshtein edit distance. This can be an advantage because, without any
contextual or statistical information, syntax and minimal Levenshtein edits are often sufficiently
constrained to identify a small number of valid repairs. It is also a limitation because the admissible
set expands rapidly with edit distance and the Levenshtein metric diminishes in usefulness without
a very precise metric to discriminate natural solutions in the cosmos of equidistant repairs.

Space complexity increases sharply with edit distance and to a lesser extent with length. This can
be partly alleviated with various encoding tricks and a more efficient GPU implementation, but the
memory overhead is still considerable. Memory pressure can be attributed to engineering factors
such as the grammar encoding, but is also an inherent challenge of language intersection. Therefore,
managing the size of the intersection grammar by preprocessing the syntax and automaton and
using an efficient representation, are critical factors in scaling up our technique.

8.1.3 Toolchain integration. Program slicing is an important preprocessing consideration that has
so far gone unmentioned. The current implementation expects pre-sliced code fragments, however
in a more practical scenario, it would be necessary to leverage editor information to identify the
boundaries of the repairable fragment. One solution would be to just use the line surrounding the
caret position, however a more complete solution requires careful editor integration.

Lastly and perhaps most significantly, Tidyparse does not incorporate semantic constraints, so
its repairs, whilst syntactically admissible, are not guaranteed to be type safe, and must be filtered
by some form of compiler or incremental type checker before presenting them to the user. It may
be possible to add a type-based semantic refinement to our language intersection, however this
would require a more expressive grammatical formalism than CFGs naturally provide.

Extending language intersections to handle type error repair requires leaving the domain of
syntax and entering the much more daunting world of semantics – here one must contend with
difficult questions in mathematical logic and finite model theory. One direction would be to collapse
these problems down to automata theory using MSO over words via the Büchi-Elgot-Trakhtenbrot
theorem. Another direction would be to increase the expressivity of the grammar, using something
like conjunctive grammars [41]. A third approach would be to adopt the framework of contextual
modal type theory, then study the behavior of Levenshtein edit distance on modal accessibility in
weak substructural type systems like the Lambek calculus [43]. We leave this for future work.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Anon.

9 RELATEDWORK
Our work draws a threefold correspondence between well-known techniques in (1) formal language
theory, (2) program analysis and (3) incremental decoding. We will first survey these topics, then
turn our attention to machine learning, with which we compare and partly use for reranking.

9.1 Formal language theory
Context-free language (CFL) parsing is the well-studied problem of how to turn a string into a
unique tree, with many different algorithms and implementations (e.g., shift-reduce, recursive-
descent, LR). Many of those algorithms expect grammars to be expressed in a certain form (e.g.,
left- or right- recursive) or are optimized for a narrow class of grammars (e.g., regular, linear).

General CFL parsing allows ambiguity (non-unique trees) and can be formulated as a dynamic
programming problem, as shown by Cocke-Younger-Kasami (CYK) [45], Earley [20] and others.
These parsers have roughly cubic complexity with respect to the length of the input string.

As shown by Valiant [52], Lee [34] and others, general CFL recognition is in some sense equivalent
to binarymatrixmultiplication, another well-studied combinatorial problemwith broad applications,
known to be at worst subcubic. This reduction opens the door to a range of complexity-theoretic
speedups to CFL recognition; however large constants tend to limit their practical applicability.

Bar-Hillel [7] proves the closure of CFLs under intersection with regular languages, but does not
elaborate on how to construct the corresponding grammar. Salomaa [47] and Pasti et al. [42] provide
helpful insights into constructing the intersection grammar, and Nederhof and Satta [40] specifically
consider finite CFL intersections, but seem unaware of the connection to CFL reachability. Our
work specializes Bar-Hillel intersections to Levenshtein automata in particular, and more generally
acyclic automata using a refinement of Salomaa’s construction [47] based on CFL reachability.

9.2 CFL reachability
Our contribution is closely related to the literature on CFL reachability. In brief, the CFL reachability
problem seeks to determine, given an edge-labeled graph and distinguished vertex pair, 〈E, E ′〉,
whether there is a path, E E ′, whose concatenated edge labels are contained in the CFL. For a
deeper overview, see Zhang and Su [59]. This problem has been known [44] for some time [32] to
have broad applications to program analysis and as our work finds, to syntactic program repair.

From a complexity-theoretic perspective, the CFL reachability problem is known to be at worst
subcubic [14] with polylogarithmic time factors. Koutrus and Deep [33] present a fine-grained
complexity analysis, with concurrent work by Istomina et al. [31] expanding on fine-grained
reductions. Muravev and Grigorev explore how to accelerate this technique on a GPU [39].

Surprisingly absent from the literature on CFL reachability is a discussion of the Bar-Hillel
construction, regular expressions for witnessability, or the use of Brzozowski’s derivative for
incremental decoding. Nor does the literature specifically consider the parallel complexity of
intersection nonemptiness between CFLs and acyclic automata such as the Levenshtein NFA (§ 4.3).
In Theorem 3.1 we give a constructive proof of finite intersection nonemptiness, borrowing the
matrix multiplication technique from CFL reachability to build a star-free regular expression that
we decode using the Brzozowski derivative. This technique sheds new light on the Bar-Hillel
construction, and translates to a simple and efficient implementation which is fully compatible
with left-to-right incremental decoding techniques used in probabilistic language modeling.

9.3 Language equations
Language equations are a powerful tool for reasoning about formal languages and their inhabitants.
First proposed by Ginsburg et al. [24] for the ALGOL language, language equations are essentially

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Syntax Repair as Language Intersection 23

systems of inequalities with variables representing holes, i.e., unknown values, in the language or
grammar. Solutions to these equations can be obtained using various fixpoint techniques, yielding
members of the language. This insight reveals the true algebraic nature of CFLs and their cousins.

Being an algebraic formalism, language equations naturally give rise to a kind of calculus, vaguely
reminiscent of Leibniz’s and Newton’s. First studied by Brzozowski [9, 10] and Antimirov [5], one
can take the derivative of a language equation, which can be interpreted as a kind of continuation
or language quotient, revealing the suffixes that complete a given prefix. This technique leads to an
elegant family of algorithms for incremental parsing [1, 38] and regular expressionmatching [49, 53].

More concretely, we restrict our attention to language equations over CFLs whose variables
coincide with edit locations in the source code of a computer program, and solutions correspond to
syntax repairs. While prior work has studied the use of language equations for parsing [38], to our
knowledge, they were never specifically considered for code completion or syntax error correction.

9.4 Syntax repair
In finite languages, syntax repair corresponds to spelling correction, a more restrictive and largely
solved problem. Schulz and Stoyan [48] construct a finite automaton that returns the nearest
dictionary entry by Levenshtein edit distance. Though considerably simpler than syntax correction,
their work shares similar challenges and offers insights for handling more general repair scenarios.

When a sentence is grammatically invalid, parsing grows more challenging. Like spelling, the
problem is to find the minimum number of edits required to transform an arbitrary string into
a syntactically valid one, where validity is defined as containment in a (typically) context-free
language. Early work, including Irons [30] and Aho [2] propose a dynamic programming algorithm
to compute the minimum number of edits required to fix an invalid string. Prior work on error
correcting parsers only considers the nearest edit(s), and does not study edits of varying distance in
the Levenshtein ball. Furthermore, the problem of repair is not generally well-posed, as there can
be many valid solutions. We instead focus on maximum probability Levenshtein-CFL reachability,
which attempts to find the most natural repair within a fixed Levenshtein distance.

Diekmann and Tratt [17] present a rule-based syntax repair tool that retrieves the complete set
of minimum-cost repairs, but only works for deterministic CFLs, a proper subset of the CFL family
which admit a linear-time parser. Their cost model is based on insertion and deletion, and does
not consider probability or non-minimal edit distance. Tidyparse can handle arbitrary CFLs and
generate repairs within an arbitrary edit distance, using a Levenshtein cost model.

Zhang et al. [60] introduce OrdinalFix, which uses CFL reachability to repair compiler errors,
however their method only returns admissible repairs and not necessarily probable ones. As they
do not consider the problem of maximum-probability repairs, nor use any form of ranking to sort
the results by naturalness or probability, we do not compare with their work.

9.5 Decoding
Decoding is a key problem in machine translation, speech recognition, and other sequence-to-
sequence tasks. Given a compressed encoding of some finite distribution, the goal is to find the
maximum probability samples. A classic example is Viterbi decoding, which is used to find the
most likely path through a hidden Markov model (HMM), a kind of weighted automaton.

In particular, we care about the problem of top-k decoding, which attempts to find the exact or
approximate :-most likely samples in order of decreasing probability. This is closely related to the
:-best enumeration [22] problem, a carefully studied problem in graph theory and combinatorial
optimization. An exact solution to this problem for large acyclic CFGs is often intractable, but we
can approximate it using a beam search over c-grams, then rerank top-scoring results.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Anon.

A popular solution to k-best decoding in the NLP literature is a technique called cube-pruning [11,
29], which samples maximum probability paths through a hypergraph. We take inspiration from
this technique and adapt it to the setting of constrained decoding from finite CFGs.

An alternate line of work originates from combinatorics [28] and Boltzmann sampling [19],
which constructs a generating function for the language and samples it uniformly. This technique
has applications to constraint satisfaction and model counting problems in formal languages.

A third approach would be to use some form of constrained decoding [36, 51, 55] such as
sequential Monte Carlo to steer an autoregressive LLM, as proposed by Lew et al. [35]. These
techniques show promise for program repair, however, the question of whether to use left-to-right
decoding or some other strategy is still unresolved in the language modeling community. For
example, there is an emerging class of flow-based or structured denoising diffusion models [6]
which starts from a noise distribution and iteratively denoises it by sampling one or more edits
at random locations with each decoding step. Typical work focuses on audiovisual data, but very
recent work by Havasi et al. [27] adapt this to the Levenshtein edit model for generating source
code. Although these models do not yet use CFGs or consider language intersections, they are
inherently more fault-tolerant than decoders which require expensive backtracking-style search.

9.6 Learning-based program repair methods
The last decade has seen a surge of progress in programming with large language models. That
work is primarily based on methods from differential calculus and continuous optimization, leading
to the so-called naturalness hypothesis [3], which suggests programming languages are not so
different from natural ones. In contrast, PL theory takes the view that languages are essentially
discrete sets governed by logical calculi. Programming, thus viewed, is more like a mathematical
exercise in constraint satisfaction. These two approaches have more in common than would seem.

From an applied perspective, a number of gradient-based methods have been introduced to repair
programming errors [4, 13, 18]. These approaches typically employ large language models (LLMs)
and treat the problem as a sequence-to-sequence transformation. While capable of generating
natural repairs, these models are susceptible to misgeneralization, costly to train, and challenging
to customize thereafter. Furthermore, the generated repairs are not necessarily sound without
additional filtering, and we observe the released models often hallucinate false positive repairs.

Two prior works specifically address syntax repair, Break-It-Fix-It (BIFI) [58] and Seq2Parse [46].
BIFI adapts techniques from semi-supervised learning to generate synthetic errors in clean code
and fixes them. This reduces the need for pairwise training data, but generalizes poorly to lengthy
or out-of-distribution repairs. Seq2Parse combines a transformer-based model with an augmented
version of the Early parser to suggest error rules, but only suggests a single repair.

Recent work by Merrill et al. [37] and Chiang et al. [12] suggest that the issue with generalization
may be more foundational: transformer-based language models, a popular class of neural language
models used in program synthesis and repair, are fundamentally less expressive than context-free
grammars, which formally describe the syntax of many programming languages. This suggests
such models, despite their useful approximation properties, are ill-suited for the task of end-to-end
syntax repair. Yet, as our work demonstrates, they can be useful for resolving ambiguity between
valid repairs of differing probability or reranking a set of repair candidates drawn from a CFL.

Using the RASP model from Weiss et al. [54], Yang et al. [57] characterize the expressive power
of hard-attention transformers in terms of star-free regular expressions. While their work uses
formal language theory to investigate language learnability and structural priors in transformers, it
shares fruitful connections to CFL reachability, which similar to RASP, treats matrix multiplication
as a kind of programmable interface into which various state tracking problems and static analysis
tasks can be compiled and analyzed in a common linear algebraic framework.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Syntax Repair as Language Intersection 25

10 CONCLUSION
Our work, while a case study on syntax repair, is part of a broader line of inquiry in program
synthesis that investigates how to weave formal language theory and machine learning into helpful
programming tools for everyday developers. In some ways, syntax repair serves as a test bench for
integrating learning and language theory, as it lacks the intricacies of type-checking and semantic
analysis, but is still rich enough to be an interesting challenge. By starting with syntax repair, we
hope to lay the foundation for more organic hybrid approaches to program synthesis.

Various codesign patterns have emerged to fuse the naturalness of neural language models
with the precision and completeness of formal methods. One seeks to filter the outputs of a
generative language model to satisfy a formal specification, typically by some form of rejection
sampling. Alternatively, some attempt to steer language models to search for valid programs
via a reinforcement learning or hybrid neurosymbolic approach. However, these approaches can
introduce significant latency into the repair process and lack strong statistical guarantees.

Our work takes a more pragmatic tack - by incorporating the distance metric into a formal lan-
guage, we attempt to exhaustively enumerate repairs by increasing distance, then use the language
model to sort the resulting solutions by naturalness. The more constraints we can incorporate into
formal language, the more efficient sampling becomes, and the more precise control we have over
the output. This reduces the need for training a large, expensive language model to relearn syntax,
and frees up our limited compute budget for more efficient search and ranking at inference time.

There is a delicate balance in formal methods between soundness and completeness. Often these
two seem at odds because the target language is too expressive to achieve them both simultaneously.
In syntax repair, we also care about naturalness. Fortunately, syntax repair is tractable enough to
achieve all three by modeling the problem using language intersection. Completeness helps us to
avoid missing simple repairs that might be easily overlooked, soundness guarantees all repairs will
be valid, and naturalness ensures the most probable repairs receive the highest priority.

We have implemented our approach and demonstrated its viability as a tool for syntax assistance
in real-world programming languages. Tidyparse is capable of generating repairs for invalid source
code in a range of practical languages, in addition to Python. We plan to continue expanding the
prototype’s autocorrection functionality to cover an even broader range of real-world programming
languages. We envision a few primary use cases for it: (1) helping novice programmers become
more quickly familiar with a new programming language, (2) autocorrecting common typos among
proficient but forgetful programmers, (3) as a prototyping tool for PL designers and educators, and
(4) as a pluggable library or service for parser-generators and language servers.

DATA-AVAILABILITY STATEMENT
An artifact for Tidyparse is currently available as a browser application, supporting single-line
syntax repairs in Python 8 and other CFLs. 9 The data, source code, and models necessary for
reproducing the experimental evaluation will be provided, contingent upon artifact review.

8https://tidyparse.github.io/python
9https://tidyparse.github.io/

https://tidyparse.github.io/python
https://tidyparse.github.io/

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Anon.

REFERENCES
[1] Michael D Adams, Celeste Hollenbeck, and Matthew Might. 2016. On the complexity and performance of parsing

with derivatives. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 224–236.

[2] Alfred V Aho and Thomas G Peterson. 1972. A minimum distance error-correcting parser for context-free languages.
SIAM J. Comput. 1, 4 (1972), 305–312.

[3] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018. A survey of machine learning for
big code and naturalness. ACM Computing Surveys (CSUR) 51, 4 (2018), 1–37. https://arxiv.org/pdf/1709.06182.pdf

[4] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. 2021. Self-supervised bug detection and repair.
Advances in Neural Information Processing Systems 34 (2021), 27865–27876. https://arxiv.org/pdf/2105.12787.pdf

[5] Valentin Antimirov. 1996. Partial derivatives of regular expressions and finite automaton constructions. Theoretical
Computer Science 155, 2 (1996), 291–319.

[6] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. 2021. Structured denoising
diffusion models in discrete state-spaces. Advances in neural information processing systems 34 (2021), 17981–17993.

[7] Yehoshua Bar-Hillel, Micha Perles, and Eli Shamir. 1961. On formal properties of simple phrase structure grammars.
Sprachtypologie und Universalienforschung 14 (1961), 143–172.

[8] Janusz A Brzozowski. 1962. Canonical regular expressions and minimal state graphs for definite events. In Proc.
Symposium of Mathematical Theory of Automata. 529–561.

[9] Janusz A Brzozowski. 1964. Derivatives of regular expressions. Journal of the ACM (JACM) 11, 4 (1964), 481–494.
[10] Janusz A. Brzozowski and Ernst Leiss. 1980. On equations for regular languages, finite automata, and sequential

networks. Theoretical Computer Science 10, 1 (1980), 19–35.
[11] David Chiang. 2007. Hierarchical phrase-based translation. computational linguistics 33, 2 (2007), 201–228.
[12] David Chiang, Peter Cholak, and Anand Pillay. 2023. Tighter bounds on the expressivity of transformer encoders. In

International Conference on Machine Learning. PMLR, 5544–5562.
[13] Nadezhda Chirkova and Sergey Troshin. 2021. Empirical study of transformers for source code. In Proceedings of

the 29th ACM joint meeting on European software engineering conference and symposium on the foundations of
software engineering. 703–715.

[14] Dmitry Chistikov, RupakMajumdar, and Philipp Schepper. 2022. Subcubic certificates for CFL reachability. Proceedings
of the ACM on Programming Languages 6, POPL (2022), 1–29.

[15] Noam Chomsky. 1959. On certain formal properties of grammars. Information and control 2, 2 (1959), 137–167.
[16] Eliezer Dekel, David Nassimi, and Sartaj Sahni. 1981. Parallel matrix and graph algorithms. SIAM Journal on computing

10, 4 (1981), 657–675.
[17] Lukas Diekmann and Laurence Tratt. 2018. Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers. arXiv preprint

arXiv:1804.07133 (2018).
[18] Dawn Drain, Chen Wu, Alexey Svyatkovskiy, and Neel Sundaresan. 2021. Generating bug-fixes using pretrained

transformers. In Proceedings of the 5th ACM SIGPLAN International Symposium on Machine Programming. 1–8.
[19] Philippe Duchon, Philippe Flajolet, et al. 2004. Boltzmann samplers for the random generation of combinatorial

structures. Combinatorics, Probability and Computing 13, 4-5 (2004), 577–625.
[20] Jay Earley. 1970. An efficient context-free parsing algorithm. Commun. ACM 13, 2 (1970), 94–102.
[21] Conal Elliott. 2019. Generalized Convolution and Efficient Language Recognition (Extended version). (2019).
[22] David Eppstein. 2014. :-best enumeration. arXiv preprint arXiv:1412.5075 (2014).
[23] P Flajolet. 2009. Analytic Combinatorics. Cambridge University Press.
[24] Seymour Ginsburg and H Gordon Rice. 1962. Two families of languages related to ALGOL. Journal of the ACM

(JACM) 9, 3 (1962), 350–371.
[25] Joshua Goodman. 1999. Semiring parsing. Computational Linguistics 25, 4 (1999), 573–606.
[26] Dick Grune and Ceriel J. H. Jacobs. 2008. Parsing as Intersection. Springer New York, New York, NY, 425–442.
[27] Marton Havasi, Brian Karrer, Itai Gat, and Ricky TQ Chen. 2025. Edit Flows: Flow Matching with Edit Operations.

arXiv preprint arXiv:2506.09018 (2025).
[28] Timothy Hickey and Jacques Cohen. 1983. Uniform random generation of strings in a context-free language. SIAM J.

Comput. 12, 4 (1983), 645–655.
[29] Liang Huang and David Chiang. 2005. Better k-best parsing. In Proceedings of the Ninth International Workshop on

Parsing Technology. 53–64.
[30] E. T. Irons. 1963. An Error-Correcting Parse Algorithm. Commun. ACM 6, 11 (nov 1963), 669–673.
[31] Aleksandra Istomina, Semyon Grigorev, and Ekaterina Shemetova. 2023. Fine-grained reductions around CFL-

reachability. arXiv preprint arXiv:2306.15967 (2023).
[32] John Kodumal and Alex Aiken. 2004. The set constraint/CFL reachability connection in practice. ACM Sigplan Notices

39, 6 (2004), 207–218.

https://arxiv.org/pdf/1709.06182.pdf
https://arxiv.org/pdf/2105.12787.pdf

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Syntax Repair as Language Intersection 27

[33] Paraschos Koutris and Shaleen Deep. 2023. The fine-grained complexity of CFL reachability. Proceedings of the ACM
on Programming Languages 7, POPL (2023), 1713–1739.

[34] Lillian Lee. 2002. Fast context-free grammar parsing requires fast boolean matrix multiplication. Journal of the ACM
(JACM) 49, 1 (2002), 1–15. https://arxiv.org/pdf/cs/0112018.pdf

[35] Alexander K Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K Mansinghka. 2023. Sequential monte carlo steering of
large language models using probabilistic programs. arXiv preprint arXiv:2306.03081 (2023).

[36] João Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu Liu, Yahya Emara, Marjorie
Freedman, Jason Eisner, et al. 2025. Syntactic and semantic control of large language models via sequential monte
carlo. arXiv preprint arXiv:2504.13139 (2025).

[37] William Merrill, Ashish Sabharwal, and Noah A Smith. 2022. Saturated transformers are constant-depth threshold
circuits. Transactions of the Association for Computational Linguistics 10 (2022), 843–856.

[38] Matthew Might, David Darais, and Daniel Spiewak. 2011. Parsing with derivatives: a functional pearl. ACM sigplan
notices 46, 9 (2011), 189–195.

[39] Ilia Muravev and Semyon Grigorev. 2025. Universal High-Performance CFL-Reachability via Matrix Multiplication
(SOAP ’25). Association for Computing Machinery, New York, NY, USA, 28–35.

[40] Mark-Jan Nederhof and Giorgio Satta. 2004. The language intersection problem for non-recursive context-free
grammars. Information and Computation 192, 2 (2004), 172–184.

[41] Alexander Okhotin. 2001. Conjunctive grammars. Journal of Automata, Languages and Combinatorics (2001).
[42] Clemente Pasti, Andreas Opedal, Tiago Pimentel, Tim Vieira, Jason Eisner, and Ryan Cotterell. 2023. On the In-

tersection of Context-Free and Regular Languages. In Proceedings of the 17th Conference of the European Chapter
of the Association for Computational Linguistics, Andreas Vlachos and Isabelle Augenstein (Eds.). Association for
Computational Linguistics, Dubrovnik, Croatia, 737–749. https://doi.org/10.18653/v1/2023.eacl-main.52

[43] Tikhon Pshenitsyn. 2025. First-Order ILL and Hypergraph Languages. arXiv preprint arXiv:2502.05816 (2025).
[44] Thomas Reps. 1998. Program analysis via graph reachability. Information and software technology (1998).
[45] Itiroo Sakai. 1961. Syntax in universal translation. In Proceedings of the International Conference on Machine

Translation and Applied Language Analysis.
[46] Georgios Sakkas, Madeline Endres, Philip J Guo, Westley Weimer, and Ranjit Jhala. 2022. Seq2Parse: neurosymbolic

parse error repair. Proceedings of the ACM on Programming Languages 6, OOPSLA2 (2022), 1180–1206.
[47] Arto Salomaa. 1973. Formal languages. Academic Press, New York. 59–61 pages.
[48] Klaus U Schulz and Stoyan Mihov. 2002. Fast string correction with Levenshtein automata. International Journal on

Document Analysis and Recognition 5 (2002), 67–85.
[49] Caleb Stanford, Margus Veanes, and Nikolaj Bjørner. 2021. Symbolic Boolean derivatives for efficiently solving

extended regular expression constraints. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 620–635.

[50] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. 2024. What formal languages can
transformers express? a survey. Transactions of the Association for Computational Linguistics 12 (2024), 543–561.

[51] Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. 2024. Improving LLM code
generation with grammar augmentation. arXiv preprint arXiv:2403.01632 (2024).

[52] Leslie G Valiant. 1975. General context-free recognition in less than cubic time. Journal of computer and system
sciences 10, 2 (1975), 308–315. http://people.csail.mit.edu/virgi/6.s078/papers/valiant.pdf

[53] Ian Erik Varatalu, Margus Veanes, and Juhan Ernits. 2025. RE#: High Performance Derivative-Based Regex Matching
with Intersection, Complement, and Restricted Lookarounds. Proceedings of the ACM on Programming Languages 9,
POPL (2025), 1–32.

[54] Gail Weiss, Yoav Goldberg, and Eran Yahav. 2021. Thinking like transformers. In International Conference on Machine
Learning. PMLR, 11080–11090.

[55] Brandon TWillard and Rémi Louf. 2023. Efficient guided generation for LLMs. arXiv preprint arXiv:2307.09702 (2023).
[56] Alexander William Wong, Amir Salimi, Shaiful Chowdhury, and Abram Hindle. 2019. Syntax and Stack Overflow: A

methodology for extracting a corpus of syntax errors and fixes. In 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 318–322.

[57] Andy Yang, David Chiang, and Dana Angluin. 2024. Masked hard-attention transformers recognize exactly the
star-free languages. Advances in Neural Information Processing Systems 37 (2024), 10202–10235.

[58] Michihiro Yasunaga and Percy Liang. 2021. Break-it-fix-it: Unsupervised learning for program repair. In International
Conference on Machine Learning. PMLR, 11941–11952.

[59] Qirun Zhang and Zhendong Su. 2017. Context-sensitive data-dependence analysis via linear conjunctive language reach-
ability. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages. 344–358.

[60] Wenjie Zhang, Guancheng Wang, Junjie Chen, Yingfei Xiong, Yong Liu, and Lu Zhang. 2023. OrdinalFix: Fixing
Compilation Errors via Shortest-Path CFL Reachability. arXiv preprint arXiv:2309.06771 (2023).

https://arxiv.org/pdf/cs/0112018.pdf
https://doi.org/10.18653/v1/2023.eacl-main.52
http://people.csail.mit.edu/virgi/6.s078/papers/valiant.pdf

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Anon.

A LEVENSHTEIN TOPOLOGY AND MATRICES
These are useful for visually checking different implementations.

q_6/1q_5/1q_4/1q_3/1q_2/1q_1/1q_0/1

q_6/0q_5/0q_4/0q_3/0q_2/0q_1/0q_0/0

Fig. 20. Lev(|f|=6, Δ=1) automaton, adjacency and reachability matrix.

q_06/02q_05/02q_04/02q_03/02q_02/02q_01/02q_00/02

q_06/01q_05/01q_04/01q_03/01q_02/01q_01/01q_00/01

q_06/00q_05/00q_04/00q_03/00q_02/00q_01/00q_00/00

Fig. 21. Lev(|f|=6, Δ=2) automaton, adjacency and reachability matrix.

q_06/03q_05/03q_04/03q_03/03q_02/03q_01/03q_00/03

q_06/02q_05/02q_04/02q_03/02q_02/02q_01/02q_00/02

q_06/01q_05/01q_04/01q_03/01q_02/01q_01/01q_00/01

q_06/00q_05/00q_04/00q_03/00q_02/00q_01/00q_00/00

Fig. 22. Lev(|f|=6, Δ=3) automaton, adjacency and reachability matrix.

q_06/04q_05/04q_04/04q_03/04q_02/04q_01/04q_00/04

q_06/03q_05/03q_04/03q_03/03q_02/03q_01/03q_00/03

q_06/02q_05/02q_04/02q_03/02q_02/02q_01/02q_00/02

q_06/01q_05/01q_04/01q_03/01q_02/01q_01/01q_00/01

q_06/00q_05/00q_04/00q_03/00q_02/00q_01/00q_00/00

Fig. 23. Lev(|f|=6, Δ=4) automaton, adjacency and reachability matrix.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Syntax Repair as Language Intersection 29

B LEVENSHTEIN AUTOMATA MINIMALITY
It is reasonable to ask whether the Levenshtein automaton defined in § 4.3 is minimal, in the sense
of whether there exists an automaton with fewer states than � yet still generates L(�∩) when
intersected with L(�). In other words, given � and f

:
, is there an �′ such that |&�′ | < |&� | yet

L(�) ∩ L(�′) = L(�) ∩ L(�) still holds? In fact, there is a trivial example:

Theorem B.1. Let &�′ be defined as &� \ {@=,0}.
Since @=,0 accepts the original string f

:
: ℓ̄ ∩ Σ= which is by definition outside L(�), we can

immediately rule out this state. Moreover, we can define a family of automata with strictly fewer
states than the full LBH construction by making the following observation: if we can prove one edit
must occur before the last B tokens, we can rule out the last B states absorbing editless trajectories.

Theorem B.2. ∅ = L(f
:1...(=−B) · ΣB) ∩ L(�) implies the states [@=−8,0]8∈1...B are unnecessary.

Likewise, if we expend our entire edit budget in the first ? tokens, we will be unable to recover
in a string where at least one repair must occur after the first ? tokens.

Theorem B.3. ∅ = L(Σ? · f
:?...=) ∩ L(�) implies the states [@8,3max]8∈0...? are unnecessary.

Therefore, we can eliminate ? +B states from� by proving emptiness of L(Σ? ·f
:?...(=−B) ·ΣB) ∩L(�),

without affecting L(�∩). For example, let us consider the pruned L-NFA for the broken string
f
:
= [(+)] with � = {(→ (() | [(] | (+ (| 1}. Its longest parseable suffix and prefix are:

(B.1) _ _ +)] ∉ L(�) ❌ ∧ _ _ _)] ∈ L(�) ✅ =⇒ [@=−8,0]8∈1...B are unnecessary.
(B.2) [(+ _ _ ∉ L(�) ❌ ∧ [(_ _ _ ∈ L(�) ✅ =⇒ [@8,3max]8∈0...? are unnecessary.

Now we can prune the top leftmost and bottom rightmost states. Pictorially, this looks as follows:

@0,0 @1,0 @2,0 @3,0 @4,0 @5,0

@0,1 @1,1 @2,1 @3,1 @4,1 @5,1

@0,2 @1,2 @2,2 @3,2 @4,2 @5,2

@0,3 @1,3 @2,3 @3,3 @4,3 @5,3

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

f3 f4 f5

f3 f4 f5

f4 f5

f2 f3 f4 f5

f2 f3 f4 f4

f2 f3 f4 f5

@0,0 @1,0 @2,0

@0,1 @1,1 @2,1 @3,1 @4,1 @5,1

@0,2 @1,2 @2,2 @3,2 @4,2 @5,2

@3,3 @4,3 @5,3

f1 f2

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

f4 f5

f3 f4 f5

f3 f4 f5

f4 f5

f2 f3 f4

f2 f3 f4 f4

f3 f4 f5

Fig. 24. Levenshtein NFA before and after prefix and suffix pruning.

C HYPERPARAMETER SETTINGS
Below is a listing of the hyperparameter settings used for training the reranking model:

• Input dimension: 100
• Encoder dimension: 512
• Attention heads: 4
• Encoder layers: 4

• Vocab size, |Σ| = 94
• Learning rate, U = 10−3

• Temperature, g = 10−1

• Optimizer: AdamW

• Negative rate: 10−2
• Batch size: 8
• Dropout: 10−1
• Activation: GELU

The full parameters \ are partitioned into two sets, \4 , \A , for the encoder and reranker layers.
The encoder is pretrained on next-token prediction, then fine-tuned on the reranking task. During
optimization, we use a smaller learning rate (U = 10−5) so as not to disturb the pretrained encoder
parameters and a larger learning rate (U = 10−4) for the reranker parameters. We train the encoder
for 2 × 104 steps and the reranker for 1.3 × 104 steps, taking ∼ 4 hours on an Nvidia H100 GPU.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Anon.

D EXAMPLE REPAIRS
Below, we provide a few representative examples of broken code snippets and the corresponding
human repairs that were successfully ranked first by our method. On the left is a complete snippet
fed to the model, and on the right, the corresponding human repair that was correctly predicted.

Original broken code First predicted repair

form sympy import *

x = Symbol('x', real=True)

x, re(x), im(x)

from sympy import *

x = Symbol('x', real=True)

x, re(x), im(x)

result = yeald From(item.create())

raise Return(result)

result = yield From(item.create())

raise Return(result)

df.apply(lambda row: list(set(row['ids')))) df.apply(lambda row: list(set(row['ids'])))

sum(len(v) for v items.values())) sum(len(v) for v in items.values())

def average(values):

if values == (1,2,3):

return (1+2+3)/3

else if values == (-3,2,8,-1):

return (-3+2+8-1)/4

def average(values):

if values == (1,2,3):

return (1+2+3)/3

elif values == (-3,2,8,-1):

return (-3+2+8-1)/4

dict = {

"Jan": 1

"January": 1

"Feb": 2 # and so on

}

dict = {

"Jan": 1,

"January": 1,

"Feb": 2 # and so on

}

class MixIn(object)

def m():

pass

class classA(MixIn):

class classB(MixIn):

class MixIn(object):

def m():

pass

class classA(MixIn): pass

class classB(MixIn): pass

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Syntax Repair as Language Intersection 31

E RAW DATA
Raw data from Precision@k experiments across snippet length and Levenshtein distance from § 7.3.
|f
:
| indicates the snippet length and Δ indicates the Levenshtein distance between the broken and

code and human fix computed over lexical tokens. For Tidyparse, we sample until exhausting the
intersection or a 10 second timeout is reached, whichever happens first, then rank the results. For
the other models Precision@1, we sample one repair and report the percentage of repairs matching
the human repair. For Precision@All, we report the percentage of repairs matching the human
repair within the top 20,000 samples. Each entry in the following table represents a pairwise disjoint
subset of �test, with at least 50 distinct Python syntax errors and repairs matching the length and
distance criteria, sampled uniformly from the full StackOverflow dataset [56].

Δ Precision@1
|f
:
| (0, 10) [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) [60, 70) [70, 80)

Tidyparse 1 0.37 0.52 0.44 0.40 0.38 0.34 0.43 0.27
2 0.65 0.64 0.56 0.50 0.42 0.48 0.30 0.32
3 0.21 0.15 0.12 0.13 0.13 0.18 0.15 0.10

Seq2Parse 1 0.35 0.41 0.40 0.37 0.31 0.29 0.27 0.21
2 0.12 0.13 0.14 0.12 0.11 0.11 0.10 0.12
3 0.03 0.07 0.08 0.09 0.09 0.02 0.07 0.06

BIFI 1 0.20 0.33 0.32 0.27 0.21 0.21 0.25 0.18
2 0.18 0.18 0.21 0.19 0.19 0.18 0.11 0.11
3 0.02 0.02 0.03 0.02 0.03 0.05 0.03 0.02

Precision@All
Tidyparse 1 1.00 1.00 1.00 0.99 0.99 1.00 0.97 0.97

2 1.00 0.99 0.98 1.00 1.00 1.00 0.94 0.90
3 1.00 0.98 0.80 0.70 0.55 0.42 0.42 0.31

BIFI 1 0.65 0.67 0.70 0.65 0.60 0.62 0.60 0.64
2 0.52 0.41 0.37 0.32 0.27 0.27 0.21 0.24
3 0.20 0.13 0.08 0.17 0.15 0.18 0.17 0.07

F SYMBOLS AT A GLANCE
Below we provide an inexhaustive listing of some common notation used throughout this paper.

Notation Meaning
� = 〈Σ,+ , %, (〉 CFG with terminals, Σ, nonterminals, + , productions, % , and start symbol (.

� = 〈&, Σ, X, @U , � 〉 Automaton with states, & , transitions, X , start state, @U and final states, � .
f
:

Syntactically invalid input string with a known target language.
|f | Length (number of terminals) of string, f .
�∗ Chomsky Normal Form (CNF) grammar.
�∩ Intersection grammar formed by intersecting an automaton with a CFG.

ℓ∩,L(�∩) Intersection language generated by some �∩.
!(f

:
, :) Levenshtein automaton of radius : for a broken string, f

:
.

[. . .] Orange text is related to the symbolic predicate in the Levenshtein automaton.
3max Maximum permitted Levenshtein edit distance (repair radius).
" Matrix encoding the product construction L(�) ∩ L

(
!(f

:
, :)

)
.

%@: Precision at rank : evaluation metric.

	Abstract
	1 Introduction
	2 Background
	2.1 Informal statement
	2.2 Formal statement

	3 Method
	4 Examples
	4.1 Recognition as intersection
	4.2 Completion as intersection
	4.3 Repair as intersection

	5 Measuring the language intersection
	5.1 Mode collapse
	5.2 Exact enumeration
	5.3 The problem with ambiguity
	5.4 Disambiguation

	6 Implementation
	6.1 GPU translation
	6.2 Training the reranker

	7 Evaluation
	7.1 Experimental setup
	7.2 Dataset statistics
	7.3 StackOverflow evaluation
	7.4 Internal evaluation

	8 Discussion
	8.1 Limitations and future work

	9 Related Work
	9.1 Formal language theory
	9.2 CFL reachability
	9.3 Language equations
	9.4 Syntax repair
	9.5 Decoding
	9.6 Learning-based program repair methods

	10 Conclusion
	References
	A Levenshtein topology and matrices
	B Levenshtein automata minimality
	C Hyperparameter settings
	D Example Repairs
	E Raw data
	F Symbols at a glance

